
• UNISYS A Series
Task Attributes
Programming
Reference Manual

Release 3.9.0

Priced Item

September 1991

Printed in U S America
8600 0502-000

• UNISYS

Title

Product Information
Announcement

o New Release 0 Revision _ Update 0 New Mail Code

A Series Task Attributes Programming Reference Manual

This Product Information Announcement announces Update 1 to the September 1991 publication of theA Series
Task Attributes Programming Reference Manual. The update is relative to the Mark 4.0.0 System Software
Release, dated July 1992.

Various technical changes have been made to improve the quality and usability of the document.

Remove

iii through iv
ix through xvi
1-9 through 1-10

1-25 through 1-28
2-5 through 2-6
2-27 through 2-28
2-77 through 2-102

2-107 through 2-108

2-113 through 2-118

2-133°through 2-136
2-149 through 2-152
2-157 through 2-160
2-169 through 2-174
2-177 through 2-178
2-191 through 2-196

2-211 through 2-212
Glossary-17 through 18
Bibliography-l through 2
Index-1 through 10

Insert

iii through iv
ix through xvi
1-9 through 1-10
I-lOA through 1-108
1-25 through 1-28
2-5 through 2-6
2-27 through 2-28
2-77 through 2-102
2-102A through 2-1028
2-107 through 2-108
2-108Afurough2-1088
2-113 through 2-118
2-118A through 2-1188
2-133 through 2-136
2-149 through 2-152
2-157 through 2-160
2-169 through 2-174
2-177 through 2-178
2-191 through 2-196
2-196A through 2-1968
2-211 through 2-212
Glossary-17 through 18
8ibliography-1 through 2
Index-1 through 10

Changes are indicated by vertical bars in the margins of the replacement pages.

Retain this Product Information Announcement as a record of changes made to the base publication.

Announcement only: Announcement and attachments: System: A Series

continued

AS151 Release: Mark 4.0.0 July 1992

Part number: 86000502-010

To order additional copies of this document

• United States customers call Unisys Direct at 1-800-448-1424

• All other customers contact your U nisys Subsidiary Librarian

• Unisys personnel use the Electronic Literature Ordering (ELO) system

•
UNISYS A Series

Task Attributes
Programming
Refere.nce Manual

Copyright © 1991 Unisys Corporation.
All Rights Reserved.
Unisys is a registered trademark of Unisys Corporation.

Release 3.9.0

Priced Item

September 1991

Printed in U S America
86000502-000

The names, places, and/or events used in this publication are not intended to correspond to any
individual, group, or association existing, living, or otherwise. Any similarity or likeness of the
names, places, and/or events with the names of any individual, living or otherwise, or that of any
group or association is purely coincidental and unintentional.

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THE DOCUMENT. Any product and
related material disclosed herein are only furnished pursuant and subject to the terms and
conditions of a duly executed Program Product License or Agreement to purchase or lease
equipment. The only warranties made by Unisys, if any, with respect to the products described in
this document are set forth in such License or Agreement. Unisys cannot accept any financial or
other responsibility that may be the result of your use of the information in this document or
software material, including direct, indirect, special or consequential damages.

You should be very careful to ensure that the use of this information and/or software material
complies with the laws, rules, and regulations of the jurisdictions with res~ct to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to
advise of such changes and/or additions.

Correspondence regarding this publication may be forwarded using the Product Information card at
the back of the manual, or may be addressed directly ~o Unisys, Product Information, 25725
Jeronimo Road, Mission Viejo, CA 92691.

Page Status

Page Issue

iii through iv -010
v through vii -000
viii Blank
ix through xiii -010
xiv Blank
xv -010
xvi Blank
1-1 through 1-8 -000
1-9 through I-lOB -010
1-11 through 1-24 -000
1-25 through 1-27 -010
1-28 Blank
2-1 through 2-4 -000
2-5 through 2-6 -010
2-7 through 2-26 -000
2-27 through 2-28 -010
2-29 through 2-76 -000
2-77 through 2-102B -010
2-103 through 2-106 -000
2-107 through 2-108A -010
2-108B Blank
2-109 through 2-112 -000
2-113 through 2-118B -010
2-119 through 2-132 -000
2-133 through 2-136 -010
2-137 through 2-148 -000
2-149 through 2-152 -010
2-153 through 2-156 -000
2-157 through 2-.160 -010
2-161 through 2-168 -000
2-169 through 2-174 -010
2-175 through 2-176 -000
2-177 through 2-178 -010
2-179 through 2-190 -000
2-191 through 2-196A -010
2-196B Blank
2-197 through 2-210 -000
2-211 through 2-212 -010
2-213 through 2-223 -000
2-224 Blank
A-1 through A-8 -000

continued

86000502-010 iii

Page Status

iv

continued

Page

Glossary-1 through 16
Glossary-17 through 18
Bibliography-1 through 2
Index-l through 9
Index-10

Issue

-000
-010
-010
-010
Blank

Unisys uses an II-digit document numbering system. The suffix of the document
number (1234 5678-xyz) indicates the document level. The first digit of the suffix (x)
designates a revision level; the second digit (y) designates an update level. For example,
the first release of a document has a suffix of -000. A suffix of -130 designates the
third update to revision 1. The third digit (z) is used to indicate an errata for a particular
level and is not reflected in the page status summary.

86000502-010

About This Manual

Purpose

Scope

This manual describes the A Series task attributes, which are used to record or control
various aspects of process behavior. All processes on an A Series system possess all the
task attributes described in these pages, though the values of the individual attributes
vary from one process to another. The operating system makes use of these attributes in
executing a process. Some programming languages also allow you to write applications
that query or modify task attributes.

This manual serves as a complete reference to the uses of task attributes on A Series
. systems. This manual also provides some examples of statements for accessing task

attributes from various sources. However, the formal syntax of these statements is
documented in other manuals. For example, the A Series Work Flow Language (WF'L)
Programming Reference Manual provides syntax diagrams for the WFL statements that
query or modify task attributes. See "Related Product Information" later in this section
for the titles of these companion manuals.

Audience
The audience for this manual consists of programmers who write tasking applications
and operators who use task equations.

Prereq u isites
Before reading this manual, you should have a basic familiarity with A Series concepts; if
not, refer to the A Series Systems Functional Overview. A more detailed introduction
to tasking and the use of task attributes is provided in the A Series Task Management
Programming Guide.

86000502-000 v

About This Manual

How to Use This Manual
This manual is intended primarily as a reference source for information about particular
task attributes. For ease of access, these attributes are all presented in Section 2 in
alphabetical order. To find a particular task attribute most quickly, open the manual
at the "Task Attribute Descriptions" tab and riffle through the pages, noting the task
attribute headings on the upper outside corners of the pages.

In this manual, the ANSI-74 version of COBOL is referred to as COBOL74, and the
ANSI-68 version is referred to as COBOL(68). Most references to COBOL in this
manual mention only COBOL74. However, many of the COBOL74 features mentioned
are also available in COBOL(68). For details, refer to theA Series COBOLANSI-68
Programming Reference Manual.

This manual uses railroad diagrams to illustrate the possible values of some task
attributes. If you are not familiar with this type of syntax notation, you should read
Appendix A of this manual, "Understanding Railroad Diagrams."

Organization

vi

The individual sections and the appendix are described in the following outline of the
manual.

Section 1. Accessing Task Attributes

This section explains how system administrators, operators, programmers, and end users
can access task attribute values. Examples are given of statements that access various
types of task attributes. This section also explains how the system resolves conflicting
values and how task attribute errors are handled.

Section 2. Task Attribute Descriptions

This section provides a detailed description of all task attributes. The following qualities
of each task attribute are described:

• Name

• Type

• Units

• Range

• Default

• Read time

• Write time

• Inheritance

• Overwrite rules

• Host Services support

86000502-000

About This Manual

• Attribute number

• Synonyms

• Language restrictions

• Explanation of uses

• Run-time errors

Some task attribute descriptions also include examples.

Appendix A. Understanding Railroad Diagrams

This appendix explains how to interpret the syntax diagrams used in this manual.

In addition, this manual includes a glossary, a bibliography, and an extensive index. The
index includes page references for all error messages discussed in this manual.

Related Product Information
The following manuals provide useful background information about tasking and about
the syntax for task attribute access in various programming languages.

A Series ALGOL Programming Reference Manual, Volume 1: Basic
Implementation (form 8600 0098)

This manual describes the basic features of the Extended ALGOL programming
language. This manual is written for programmers who are familiar with programming
concepts.

A Series COBOLANSI-74 Programming Reference Manual, Volume 1: Basic
Implementation (form 8600 0296)

This manual describes the basic features of the standard COBOL ANSI-74 programming
language, which is fully compatible with the American National Standard, X3.23-1974.
This manual is written for programmers who are familiar with programming concepts.

A Series Task Management Programming Guide (form 8600 0494). Formerly
Work Flow Administration and Programming Guide

This guide explains how to initiate, monitor, and control processes on an A Series system.
It describes process structures and process family relationships, introduces the uses of
many task attributes, and gives an overview of interprocess communication techniques.
The A Series Task Attributes Programming Reference Manual is a companion manual.

A Series Work Flow Language (WFL) Programming Reference Manual (form
86001047)

This manual presents the complete syntax and semantics of WFL. WFL is used to
construct jobs that compile or run programs written in other languages and that perform
library maintenance such as copying files. This manual is written for individuals who
have some experience with programming in a block-structured language such as ALGOL
and who know how to create and edit files using CANDE or the Editor.

86000502-000 vii

viii 8600 0502-000

Contents

Section 1.

About This Manual . v

Accessing Task Attributes

Operator and End-User Access to Task Attributes
Using CANOE and MARC Task Equations
Assigning Task Attributes to a Session
Using Operator Commands

Programmer Access to Task Attributes
Standard Methods for Accessing Task Attributes

Using Task Variables
Reusing Task Variables
Using WFL Task Equations
Using the WFL Job Attribute List
Assigning Task Attributes to an Object Code File .
Task Attribute Syntax Examples

Accessing Boolean Task Attributes
Accessing Event Task Attributes
Accessing Integer and Real Task Attributes .
Accessing Mnemonic Task Attributes
Accessing String Task Attributes
Accessing Task-Valued Task Attributes
Accessing Task Attributes at the Bit Level ..

Using WFLSUPPORT to Access Task Attributes
Assigning Task Attributes through

HANDLEATTRIBUTES
Decoding Error Values with ATTRIBUTEMESSAGE
Examples

System Administrator Access to Task Attributes
Assigning Task Attributes to Usercodes•.
Assigning Job Queue Attributes•.........

System Access to Task Attributes•.............•..
Making Automatic Assignments

Providing Default Values
Providing Inherited Values
Updating Task Attribute Values •............

Resolving Conflicting Values
Overwrite Rules for WFL Jobs
Overwrite Rules for Session Tasks
Overwrite Rules for Other Processes

Task Attribute Errors•.

1-1
1-1
1-2
1-2
1-2
1-2
1-2
1-3
1-4
1-5
1-5
1-6
1-6
1-7
1-7
1-8
1-8
1-9
1-9

I-lOB

I-lOB
1-18
1-20
1-22
1-22
1-23
1-23
1-23
1-23
1-23
1-24
1-24
1-24
1-25
1-25
1-25

Section 2. Task Attribute Descriptions

Choosing the Right Task Attribute •.. • . • . . . • . 2-1

86000502-010 ix

Contents

Format of the Descriptions. 2-7
Name. 2-7
Type. 2-7
Units. 2-7 .
Range. 2-7
Default 2-9
Read Time. 2-9
Write Time. 2-10
Inheritance. 2-10
Overwrite Rules 2-11
Host Services . 2-11
Attribute Number . 2-11
Synonym . 2-11
Restrictions 2-12
Explanation 2-13
Examples. 2-13
Run-Time Errors . 2-13

Individual Descriptions. 2-13
ACCEPTEVENT. 2-14
ACCESSCODE 2-16
ACCUMIOTIME. 2-19
ACCUMPROCTIME . 2-20
APPLYLIST. 2-21
AUTORESTORE . 2-22
AUTOSWITCHTOMARC . 2-24
BACKUPFAMILY. 2-25
BDNAME . • . . 2-28
BRCLASS. 2-30
CHARGE • 2-32
CHECKPOINTABLE . 2-35
CLASS•. 0. • 2-37
CODEVISIBILITY 0 ••••••••••• 0 •••• 0 • • • • • • • • • 2-39
CONVENTION•......... 0 • • • • • • 2-40
CORE 0... 2-42
DATABASE. • 2-44
DECKGROUPNO•... 0 • 0 • • 2-46
DEPTASKACCOUNTING 2-47
DESTNAME .. 0 ••••• 0 •••••••••••••••••• o. • 2-50
DESTSTATION 0.' ••••••••••• 0 • • • • • • • • • • • • • 2-53
DISKLIMIT . 0 •••• 0 • 2-55
DISPLAYONL YTOMCS . . • . 2-57
ELAPSEDLIMIT •........ 0 • • • • • • • • • • • • • • • • • • 2-59
ELAPSEDTIME . 2-60
ERROR 0 0... 2-61
EXCEPTION EVENT •.. 0 • 0 •••••••••••• 0 ••• 0 • • 2-65
EXCEPTIONTASK .•.. 0... 2-67
FAMILY .•. 0 ••••••• 0 ••••••••••••••••• 0 • • • 2-69
FETCH o ••••••••••••• 0. • . •. • •.• . 2-72
FILEACCESSRULE 0 • • • 2-74
FILEACCOUNTING ...•... 0 • • • • • • • • • • • • • • • • • 2-76
FILECARDS • . . . • 2-78
HISTORY 0 •••••• 0 0 • 0 • 2-82 .

x 86000502-010

86000502-010

Contents

HISTORYCAUSE
HISTORYREASON
HISTORYTYPE
HOSTNAME
HSPARAMSIZE
INHERITMCSSTATUS
INITPBITCOUNT
INITPBITIIME
ITINERARY
JOBNUMBER
JOBSUMMARY
JOBSUMMARYTITLE
LANGUAGE
LIBRARY
LlBRARYSTATE
LlBRARYUSERS
LOCKED
MAXCARDS
MAXIOTIME
MAXLINES
MAXPROCTIME
MAXWAIT .•.....•.......................
MCSNAME•........................
MIXNUMBER
MYPPB
NAME•.............................
NOJOBSUMMARYIO
OPTION
ORGUNIT .•.....•..................•....
OTHERPBITCOUNT •.......................
OTHERPBITTIME
PARTNER .•........................•....
PARTNEREXISTS•....
PRINTDEFAULTS•......••....
PRIORITY .•................•....•..•...•
RESOURCE•............
RESTART•....•.•...........•....
RESTARTED
SAVEMEMORYLIMIT•....
SOURCEKIND•.......•....
SOURCENAME•.......•....
SOURCESTATION•.............•....
STACKHISTORY ...•.................•.....
STACKLIMIT•.........•..
STACKSIZE•.•.....•....
STARTTIME•...•......•.....
STATION•.......•....
STATUS
STOPPOINT•...........•......•.....
SUBSPACES••......•.........•.•.•..
SUBSYSTEM•....
SUPPRESSWARNING•.....•........••..

2-83
2-86

2-103
2-104
2-106
2-107

2-108A
2-109
2-110
2-112
2-114
2-117

2-118B
2-120
2-123
2-124
2-125
2-126
2-128
2-130
2-132
2-134
2-136
2-137
2-138
2-140
2-142
2-144
2-149
2-152
2-153
2-154
2-156
2-157
2-159
2-161
2-164
2-165
2-166
2-168
2-170
2-172
2-175
2-178
2-179
2-181
2-183
2-185
2-187

. 2-189
2-190
2-191

xi

Contents

SWI through SW8 2-194
TADS. .. 2-196
TANKING. .. 2-197
TARGET. .. 2-199
TASKERROR 2-200
TASKFILE. .. 2-204
TASKLIMIT. .. 2-206
TASKSTRING .. 2-208
TASKVALUE. .. 2-210
TASKWARNINGS 2-211
TEMPFILELIMIT .. 2-213
TEMPFILEMBYTES .. 2-215
TYPE. .. 2-216
USERCODE .. 2-217
VALIDITYBITS 2-220
VISIBILITY. .. 2-221
WAITLIMIT. .. 2-222

Appendix A. Understanding Railroad Diagrams

What Are Railroad Diagrams? A-I
Constants and Variables. A-2
Constraints. A-2

Following the Paths of a Railroad Diagram A-5
Railroad Diagram Examples with Sample Input A-6

Glossary. 1

Bibliography. 1

Index. 1

xii 86000502-010

Figures

A-I. Railroad Constraints A-5

86000502-010 xiii

xiv 86000502-010

Tables

1-1.
1-2.
1-3.

2-1.
2-2.
2-3.
2-4.
2-5.

86000502-010

HANDLEATTR/BUTES Parameters
HANDLEATTRIBUTES Error Numbers ...•..•..................
ATTRIBUTEMESSAGE Parameters

Task Attribute Functional Groupings
Task Attribute Synonyms
USERDATA Errors ...•...................................
Task Attributes by Number
Library Attributes by Number•..........................

1-12
1-16
1-18

2-1
2-12
2-62
2-63

2-202

xvi 86000502-010

Section 1
Accessing Task Attributes

The types of task attribute access that are possible are reading a task attribute
and assigning a value to a task attribute. The end user, programmer, operator, and
system administrator all have the ability to access the task attributes of a process in
various ways. The system software also plays an important role in providing default
and inherited values, resolving conflicting assignments, and issuing errors for invalid
attempts to access task attributes.

Operator and End-User Access to Task Attributes
The operator or end user can affect the task attributes of a process with commands
entered in Command and Edit (CANDE) or Menu-Assisted Resource Control (MARC)
sessions or at the operator display terminal (ODT).

Using CANOE and MARC Task Equations

You can make task attribute assignments in CANDE or MARC by using task equations.
Task equations are task attribute assignments that you can append to a process
initiation statement. The system applies these assignments before initiating the process.

In CANDE, you can include task equations after most process initiation statements,
including RUN and UTILITY. In MARC, you can include task equations after the RUN
command. Also, if you initiate a process from the RUN screen, you can enter task
equations on the TASKATTR screen and the FILEEQUATE screen.

The following is a CANDE example:

RUN ALGOL/TASK;SWl=TRUE;MAXPROCTIME=20;
FILE IN=DAILY/DATA;FILE OUT(KIND=DISK,TITLE=OUTPUT);

The preceding example shows assignments to several types of task attributes. SWI is
a Boolean attribute, and MAXPROCTIME is a real attribute. The FILE IN and FILE
OUT assignments are examples of the syntax for assigning the FILECARDS task
attribute.

You can also include task equations after a CANDE COMPILE command. Such task
equations can make assignments to the compilation or the resulting object code file. For
details, refer to "Assigning Task Attributes to an Object Code File" in this section.

Note that a process can change the values of many of its own task attributes while it
is running. Thus, a programmer can design a process to override the effects of task
equations submitted by operators.

86000502-000 1-1

Accessing Task Attributes

Assigning Task Attributes to a Session

When you initiate a process from a CANDE or MARC session, the process inherits a
number of task attributes from the session. You can make assignments to some of
the task attributes of the session by using special CANDE and MARC commands such
as FAMILY, LANGUAGE, and so on. Thereafter, all the processes you initiate from
the session inherit these values, unless you override them with task equations. For
details, refer to the discussion of tasking from interactive sources in the A Series Task
Management Programming Guide.

Using Operator Commands

You can use any of several system cominands to make assignments to the task attributes
of a running process. These system commands, or close equivalents to them, can be
entered at an ODT or in a MARc or CANDE session. These include communication
commands, which affect such task attributes as EXCEPTIONEVENT, ACCEPTEVENT,
and TASKVALUE. You can use other commands to change the PRIORITY value or to
change the STATUS value of the process. For details~ refer to the discussion of tasking
from interactive sources in the A Series Task Management Programming Guide.

Programmer Access to Task Attributes
You can access task attributes in either of two ways:

• Through language constructs in Work Flow Language (WFL), ALGOL, COBOL(68),
COBOL74, PL/I, andAPLB

• Through calls on the WFLSUPPORT library

The following subsections discuss the WFL, ALGOL, and COBOL74 language constructs
for reading and assigning task attributes, as well as the WFLSUPPORT interface.

For information about task attribute access in APLB, refer to the A Series APLB
Programming Reference Manual. For information about task attribute access in
COBOL(68), refer to theA Series COBOLANSI-68 Programming Reference Manual.
For details about task attribute access in PL/I, refer to the A Series PL/I Reference
Manual.

Standard Methods for Accessing Task Attributes

You can access task attributes from programs by any of several means, including task
variables, task equations, the WFL job attribute list, and object code file assignments.

Using Task Variables

1-2

Task variables are the main means of accessing task attributes from programs. A task
variable is an object that is declared in a program and that accesses the task attributes of
a particular process. The task variable becomes associated with a particular process by

86000502-000

Accessing Task Attributes

being specified in the statement that initiates that process. For example, the following
COBOL74 statement initiates a process and associates the task variable TASK-V AR-l
with that process:

PROCESS TASK-VAR-l WITH PROC-EXTERNAL.

Certain predeclared task variables are available that are automatically associated with
a particular process. The MYSELF task variable allows a process to access its own
task attributes. The MYJOB task variable accesses the task attributes of the job of
the process. The task attribute PARTNER accesses the task attributes of the partner
process, and the task attribute EXCEPTIONTASK accesses the task attributes of the
exception task.

Additionally, a process can access any task variable that is within the extended
addressing environment of the outer block of the process. For example, if the process is
an internal task, it can access task variables declared globally in its parent. The process
can access any task variables declared in its own code. The process can also access any
task variables that are passed as parameters.

Task attributes can be assigned to a task variable before the task variable is used in a
process initiation statement. These task attributes are assigned to the new process
when it is initiated. If the same task attribute is assigned more than once, the most
recent value assigned is used when the process is initiated. If the task attributes of the
task variable are read before initiation, they return their default values or the values
-they were previously assigned.

If a task variable is associated with a dependent process in the initiation statement, then
the task variable remains associated with the process after initiation. The task variable
can be used to access the task attributes of the running process. Assignments to the
task variable can change the behavior of the process. Interrogations of the task variable
can be used to monitor the status of the process.

If a task variable is associated with an independent process in the initiation statement,
then any task attributes that were previously assigned to the task variable are applied to
the independent process. However, once initiation completes, the task variable ceases to
be associated with the independent process. The task attributes of the task variable can
be read or written to; however, these operations do not access the task attributes of the
independent process. .

Once the process has terminated, the task variable can be used to examine the final
values of the task attributes of the process. For example, the history-related attributes
of the task variable can be examined for information about how the process terminated.

Reusing Task Variables

The same task variable can be specified in more than one task initiation statement in a
program. However, the same task variable cannot be associated with two processes at
the same time. For example, the following pair of ALGOL statements causes an error:

86000502-000

PROCESS PROGI [T];
PROCESS PROG2 [T];

1-3

Accessing Task Attributes

Because the first statement initiates an asynchronous process, task variable T is still
in use when the second statement is executed. An ALGOL process that executes the
statements in the previous example is discontinued with the run-time error "INITIATE
ACTIVE TASK".

More obscure problems can arise from task attributes being carried over from one use of
the task variable to another. Consider the following ALGOL statements:

CALL PROGI [T];
CALL PROG2 [T];

No error results from these statements, because PROG 1 is initiated as a synchronous
process. The statement that initiates PROG2 is not executed until PROG 1 terminates.
However, PROG 1 might have used the MYSELF task variable to make an assignment
to its FAMILY task attribute. This new FAMILY value is passed on to PROG2, simply
because it uses the task variable that was previously associated with PROG 1. Other
task attribute values can also be passed on in this way.

This problem can be prevented by declaring a different task variable for each process
that is to be initiated. The task variable can also be made safe for reuse by reinitializing
it. A task variable can be reinitialized by setting the STATUS task attribute to
NEVERUSED. This assignment causes all task attributes to be returned to their default
values. The following ALGOL statement reinitializes a task variable:

TVAR.STATUS := VALUE(NEVERUSED);

WFL also provides the INITIALIZE statement for reinitializing task variables. The
following is an example of this statement:

INITIALIZE (TVAR);

These statements reinitialize the task variable only if it is not currently in use.
That is, the current value of the STATUS task attribute must be TERMINATED,
BADINITIATE, or NEVERUSED. Otherwise, the assignment has no effect.

Using WFL Task Equations

1-4

You can use task equations in WFL jobs that are similar to the task equations allowed
in CANDE or MARC sessions. You can include task equations after a process initiation
statement, such as RUN or PROCESS. Where task equations conflict with previous
assignments to the task variable, the task equations take precedence. The following is
an example of a WFL job that uses task equations:

100 ?BEGIN JOB WFL/TESTj
200 TASK T (TASKVALUE = 3);
300 RUN OBJECT/ALGOL/TASK [T];
400 TASKVALUE = 1;
500 ?END JOB

In this example, OBJECT/ALGOLtrASK runs with a TASKV ALUE of 1 because the
task equation overrides the previous assignment to the task variable.

86000502-000

Accessing Task Attributes

You can also use task equations with the COMPILE statement to make assignments to
the compilation or the resulting object code file. For details, refer to "Assigning Task
Attributes to an Object Code File" in this section.

Note that a process can change the values of many of its own task attributes while it
is running. Thus, a programmer can design a process to override the effects of task
equations submitted through WFL.

Using the WFL Job Attribute List

A WFL job attribute list consists of task attribute assignments in the WFL source
program, immediately following the job header. The system applies the assignments in
the job attribute list before initiating the job. This feature can be useful because some
task attributes can be assigned to a process only before initiation (an example is the
CLASS task attribute).

The following is an example of a WFL job with a job attribute list that assigns the
CLASS, CHARGE, and JOBSUMMARY task attributes: .

?BEGIN JOB RUNNER;
CLASS = 2;
CHARGE = ORDERS;
JOBSUMMARY = SUPPRESSED;

RUN OBJECT/TAU ON PACK;
?END JOB

Assigning Task Attributes to an Object Code File

In some cases, you might want certain task attributes to be assigned the same values
each time a program is run. For many task attributes, you can achieve this effect by
including statements in the source program that assign task attributes to the MYSELF
task variable. However, some task attributes cali only be assigned before process
initiation. For a WFL job, you can assign such task attributes in the job attribute list.
For programs written in other languages, you can assign such task attributes to the
object c~de file. The task attributes stored in the object code file are used whenever
the object code file is initiated, unless they are overridden by later task attribute
assignments.

You can assign task attributes to the object code file at compile time through the use
of compiler task equations, which can be included in the WFL or CANDE COMPILE
statements. You must be careful to distinguish between task equations that affect
the compilation itself and task equations that affect the resulting object code file. The
following WFL example uses compiler task equations:

500 COMPILE OBJECT/X WITH ALGOL LIBRARY;
600 COMPILER FILE CARD (TITLE = X, KIND = DISK);
700 ALGOL PRIORITY = 50;
800 TASKVALUE = 3;

In both WFL and CANDE, task equations are applied to the compilation if they are
preceded by the word COMPILER or the name of the compiler; Otherwise, the task

8600 0502-000 1-5

Accessing Task Attributes·

equations are applied to the object code file. In the preceding example, the task
equations at lines 600 and 700 ar~ applied to the compilation. The task equation at line
800 is applied to the object code file.

WFL includes a statement that can be used to make task attribute assignments to an
existing object code file. This is the MODIFY statement. Task attributes that are stored
by a MODIFY statement have the same effect as task attributes assigned at compile
time: they serve as default values for every execution of that object code file. They also
override any conflicting task attribute assignments that were made at compile time. The
following is an example of a MODIFY statement:

MODIFY OBJECT/X;
CHARGE = ADMIN;
FILE INPUT = (JAS)DOC/103 ON DOCPK;

Task Attribute Syntax Examples

Different task attributes store different types of values. Most task attributes store
values that are of type Boolean, event, integer, mnemonic, real, string, or task. The
following pages give examples of how these various types of task attributes can be read
or assigned in WFL, ALGOL, and COBOL74. For information about how to access
task attributes that are of irregular types, refer to the task attribute descriptions in
Section 2, "Task Attribute Descriptions."

Accessing Boolean Task Attributes

1-6

Boolean task attributes have a value of TRUE or FALSE. In WFL, these values can be
read or assigned directly, or the task attribute can be used in other Boolean expressions.
WFL also allows the use of a null assignment, which assigns a value of TRUE. Thus, the
following two statements are equivalent. (In these statements, T is a task variable.)

T (DISPlAYONlYTOMCS = TRUE);
T (DISPlAYONlYTOMCS); % Null assignment; assigns a value of TRUE

The following WFL examples show the use of Boolean task attributes as expressions.
BOOL is a Boolean variable and T is a task variable.

BOOl := T(lOCKED);
IF T(SWl) THEN DISPLAY "NO ERRORS FOUND";

The ALGOL syntax is similar, except that task attributes are preceded by periods
instead of enclosed in parentheses. In the following examples, BOOL is a Boolean
variable and T is a task variable:

T.DISPlAYONlYTOMCS := TRUE;
BOOl := T.lOCKED;
IF T.SWI THEN BOOl := TRUE;

In COBOL74, Boolean task attributes return a value of 0 if FALSE or 1 if TRUE.
Boolean attributes must be moved into a numeric receiving field. However, the VALUE

86000502-000

Accessing Task Attributes

function can be used when assigning or reading Boolean values. In the following
examples, BOOLVAL was declared as 77 BOOLVAL BINARY PIC 9(11).

MOVE ATTRIBUTE LOCKED OF MYSELF TO BOOLVAL.
CHANGE ATTRIBUTE LOCKED OF MYSELF TO VALUE FALSE.
IF ATTRIBUTE SWl OF MYSELF = VALUE FALSE

DISPLAY It SWITCH ONE IS OFF. It

Accessing Event Task Attributes

The event task attributes are accessed by the same types of statements that access
event variables. For a discussion of statements related to events, refer to the A Series
Task Management Programming Guide.

The following are ALGOL examples:

CA,USE (MYSELF. EXCEPTIONTASK. EXCEPTIONEVENT) ;
WAITANDRESET (MYSELF.EXCEPTIONEVENT);

The following are COBOL74 examples:

CAUSE ATTRIBUTE EXCEPTIONEVENT OF MYSELF.
WAIT AND RESET UNTIL ATTRIBUTE EXCEPTIONEVENT OF MYSELF.

WFL jobs cannot reference event task attributes directly. However, the following
statements cause the job to implicitly wait on the exception event and the accept event:

WAIT; % Causes the job to wait on its own exception event.
STR := ACCEPT(ItENTER A COMMAND It); % Waits on its own accept event &

% stores operator AX command
% input in string variable STR.

Accessing Integer and Real Task Attributes

In general, integer and real task attributes accept or return a nwneric identifier, literal,
or arithmetic expression. The system allows you to mix integer and real types: thus, you
can assign a real value to an integer task attribute or read a real task attribute value into
an integer variable. The system rounds off real numbers to change them into integers
where necessary.

In the following WFL example, INT is an integer variable and T is a task variable:

CLASS = 2;
INT := T(TASKVALUE);

In the following ALGOL example, INT is an integer variable and T is a task variable:

T.TASKVALUE := 3;
INT : = T.CORE;

8600 0502-000 1-7

Accessing Task Attributes

In the following COBOL74 examples, INTV AL was declared as 77 INTV AL BINARY
PIC 9(11).

CHANGE ATTRIBUTE TASKVALUE OF MYSELF TO 16.
MOVE ATTRIBUTE TASKVALUE OF MYSELF TO INTVAL.

Accessing Mnemonic Task Attributes

In WFL, mnemonic task attributes can be read into string values or compared with
string values. Mnemonics can be assigned as keywords, without quotes around them. In
the following examples, STR is a string variable and T is a task variable:

MYSELF(JOBSUMMARY = SUPPRESSED);
STR := T(HISTORYTYPE);
IF T(HISTORYTYPE) = "NORMALEOTV" THEN DISPLAY "RAN SUCCESSFULLY";

In ALGOL, mnemonic task attributes accept or return a numeric value. The VALUE
function can be used to translate a mnemonic into a numeric value for assignment to, or
comparison with, a mnemonic task attribute. In the following examples, INTV AL is an
integer variable and T is a task variable:

MYJOB.JOBSUMMARY := VALUE(SUPPRESSED);
INTVAL := T.HISTORYTYPE;
IF T.HISTORYTYPE = VALUE(SUPPRESSED) THEN

In COBOL74, mnemonic task attributes also accept or return a numeric value and the
VALUE function is also available. In the following examples, MNEMV AL was declared
as 77 MNEMV AL BINARY PIC 9(11):

MOVE ATTRIBUTE JOBSUMMARY OF MYSELF TO MNEMVAL. % Returns a number
CHANGE ATTRIBUTE JOBSUMMARY OF MYSELF TO VALUE UNCONDITIONAL.
IF ATTRIBUTE JOBSUMMARY OF MYSELF = VALUE UNCONDITIONAL

DISPLAY "JOBSUMMARY IS UNCONDITIONAL".

Accessing String Task Attributes

1-8

In WFL, string task attributes can be read into string variables and assigned string
literals, variables, or expressions. WFL also allows some string task attributes to be
assigned a nonquoted value. If a string task attribute is assigned a nonquoted value,
then the nonquoted value is checked for correct syntax at compile time. If the same task
attribute is assigned a string value, the contents of the string are not checked for syntax
until run time.

In the following WFL examples, STR is a string variable and T is a task variable:

T(FAMILY DISK = DPMAST OTHERWISE DISK); % Nonquoted assignment
T(FAMILY = "DISK = DPMAST OTHERWISE DISK"); % String assignment
T(FAMILY = "GIBBERISH"); % Receives run-time error
STR := T(FAMILY); % Reading the value into a string variable

86000502-000

Accessing Task Attributes

In ALGOL, string task attributes are treated as one-dimensional EBCDIC arrays. You
can use REPLACE statements to assign values or to read string task attribute values
into EBCDIC arrays. You must terminate values assigned to string task attributes with
a period C.). Values returned by string task attributes are also terminated with a period.
In the following examples, T is a task variable and ARR is an EBCDIC array that was
declared as EBCDIC ARRAY ARR[O:79]:

REPLACE T.NAME BY II (JASMITH) OBJECT/THETA ON PACK.";
REPLACE ARR BY T.NAME;

Note: Note that ALGOL syntax does not allow you to use string task
attributes in the same way as string variables. For example, if STR
is a string variable, the statement STR : = T.NAME results in a
syntax error.

In COBOL74, string task attributes accept or return an alphanumeric item. The value is
terminated with a period, as in ALGOL. In the following example, TASK-V AR-l is a task
variable and STRINGVAL was declared as 77 STRINGVAL PIC X(BO):

CHANGE ATTRIBUTE NAME OF TASK-VAR-l TO "OBJECT/ALGOL/TASK.".
MOVE ATTRIBUTE FILECARDS OF TASK-VAR-l TO STRINGVAL.

Accessing Task-Valued Task Attributes

Task-valued task attributes can be assigned a task variable or can be used as task
variables to access the task attributes of a particular process. In the following ALGOL
examples, TV AR is a task variable that was previously declared:

MYSELF.PARTNER := TVAR;
MYSELF.EXCEPTIONTASK.TASKVALUE := 33;

In the following COBOL74 examples, TV AR-! and TV AR-2 were previously declared as
77-level items with a USAGE of TASK:

CHANGE ATTRIBUTE EXCEPTIONTASK OF TVAR-l TO TVAR-2.
CHANGE ATTRIBUTE PRIORITY OF ATTRIBUTE PARTNER OF MYSELF TO 65.

Task-valued task attributes cannot be accessed from WFL.

Accessing Task Attributes at the Bit Level

Some Boolean, integer, and real task attributes return values that are divided into bit
fields with distinct meanings. Examples are the ERROR, HISTORY, LIBRARYSTATE,
ORGUNIT, SOURCE STATION, and STOPPOINT task attributes.

8600 0502-010 1-9

Accessing Task Attributes

1-10

The following are ALGOL statements that extract the values from various fields of the
ERROR task attribute. In these statements, R is a real variable, ERR is a Boolean
variable, and ERRNUM and UCERRNUM are real variables:

R := TVAR.ERROR; % Put ERROR value in real variable
ERR := BOOLEAN(R.[46:1]);
ERRNUM := R.[7:8];
UCERRNUM := R.[27:20];

% Translate a bit value into a Boolean
% Record the task attribute number
% Record the USERDATA error number

The following are COBOL74 statements that extract the values from the various fields of
the ERROR task attribute. The variables INTV AL, ERR, ERRNUM, and UCERRNUM
were all declared as 77-level variables of type BINARY PIC 9(11).

MOVE ATTRIBUTE ERROR OF TASK-VAR-1 TO INTVAL.
MOVE INTVAL TO ERR [46:00:01].
MOVE INTVAL TO ERRNUM [07:07:08].
MOVE INTVAL TO UCERRNUM [27:19:20 J.

86000502-010

Accessing Task Attributes

In WFL, there is no direct way to access task attributes at the bit level. However, the
ERROR task attribute can be accessed by mnemonic values in WFL. Further, a WFL job
can extract values from selected fields of any real or integer value by calling the following
ALGOL program:

PROCEDURE WORDANALYZER(FULLWORD, STARTPOINT, LENGTH, FIELDVAL);
VALUE FULLWORD, STARTPOINT, LENGTH;
REAL FULLWORD, FIELDVAL;
INTEGER LENGTH, STARTPOINT;

BEGIN
FIELDVAL := FULLWORD.[STARTPOINT:LENGTH];

END.

In the WORDANALYZER program, the FULLWORD parameter receives the real or
integer value to be analyzed. The ST ARTPOINT parameter receives the left-most bit
position of the field being evaluated. The LENGTH parameter receives the length of the
field being evaluated. The FIELDV AL parameter returns the value of the specified field.
Note that the calling WFL job should pass the FIELDV AL parameter by reference.

WFL does not provide access to the HISTORYREASON task attribute. The
following WFL job determines the mSTORYREASON value indirectly by calling the
WORDANALYZER program. WORDANALYZER extracts field [23:08] from the
mSTORY task attribute value.

BEGIN JOB TEST/WFL;
REAL HREASON;
TASK T;
RUN OBJECT/DELTA [T];
RUN OBJECT/WORDANALYZER(T(HISTORY),23,8,HREASON REFERENCE);
IF T(HISTORYTYPE) = "DSEDV" AND T(HISTORYCAUSE) = 1I0PERATORCAUSEV II

AND HREASON = 2 % Equivalent to HISTORYREASON mnemonic JUSTDSEDV
THEN ABORT "OBJECT/DELTA WAS DSED BY OPERATOR";
END JOB

Note: Some programmers have attempted to use WFL expressions involving
DIV and MOD operators to extract the values offields in words. This
method is not recommended, because the DIV and MOD operators
interpret a number of the bits in field [47:09J as sign or exponent
values. The value of these high-order bits can therefore affect the
results of DIV and MOD operations.

ALGOL, COBOL74, and WFL all provide bit-level access to the OPTION task attribute
by way of special mnemonics that specify the bit position. For examples, refer to the
discussion of OPTION in Section 2, "Task Attribute Descriptions."

86000502--010 I-lOA

Accessing Task Attributes

Using WFLSUPPORT to Access Task Attributes

The WFLSUPPORT system library exports two library procedures that assist in
assigning attributes to a task variable: the HANDLEATTRIBUTES procedure and
the ATrRffiUTEMESSAGE procedure. The HANDLEATTRIBUTES procedure
accepts a string of text containing task attribute assignments, and makes the requested
assignments to a task variable. The ATTRIBUTEMESSAGE procedure accepts an
encoded task attribute assignment error as input and returns a textual error message.

Assigning Task Attributes through HANDLEATTRIBUTES

The HANDLEATrRIBUTES procedure has the following primary uses, which are both
illustrated by the examples later in this section.

• It can be used to pass task attributes to a compiler for insertion into an object
code file. The use of HANDLE ATTRIBUTES replaces the old mechanism of
attaching attributes to the compiler SHEET array. This old mechanism is to be
deimplemented on a future release.

• It can be used by an interactive program to allow the user to enter task attribute
assignments at run time. Because HANDLEATTRIBUTES includes all the logic for
checking the task attribute syntax, the interactive program need not be changed as
new task attributes are implemented in the future.

1-108 86000502-010

Accessing Task Attributes

The HANDLEATTRIBUTES procedure assumes that the task attribute assignments
follow the syntax of a task equation list in WFL, except that local data specifications
cannot be included. For the syntax of the WFL task equation list, refer to the A Series
Work Flow Language (WFL) Programming Reference Manual.

HANDLEATTRIBUTES can handle assignments to all the task attributes that can
be specified in WFL. These include assignments to the DATABASE, FILECARDS,
and LIBRARY task attributes, which are known in WFL as database equations, file
equations, and library equations, respectively. Like WFL, HANDLEATTRIBUTES does
not handle assignments to task attributes of type event or task.

If any of the task attribute assignments contains an error, FlANDLEATTRIBUTES·
returns without making the requested assignments. You can specify options to tell
HANDLEATTRIBUTES whether to accept assignments that generate warnings.

You can use the AICOMPILEF field of the HOWl parameter to specify whether
HANDLEATTRIBUTES is to accept both compiler task equations and noncompiler task
equations. Additionally, you can use the DISPOSITION parameter to specify whether
the equations are to be assigned to the target task variable, assigned to the MYPPB task
attribute for later use, or simply checked for syntactical correctness.

The following is an ALGOL example of the way the WFLSUPPORT library declaration
and the HANDLEATTRIBUTES procedure declaration look in a calling program:

LIBRARY WFLSUPPORT (LIBACCESS=BYFUNCTION);

REAL PROCEDURE HANDLEATTRIBUTES
(TEXT,TEXTOFFSET,TEXTLENGTH,HOW1,DISPOSITION,TARGET,ERRORLOC);

REAL TEXTOFFSET,TEXTLENGTH~HOW1,DISPOSITION, ERRORLOC;
EBCDIC ARRAY TEXT[*];
TASK TARGET;
LIBRARY WFLSUPPORT;

Alternatively, you can use the $INCLUDE compiler option in your program to
automatically insert these declarations from the file *SYMBOL/ATTRIBUTE/
INTERPRETER/INTERF ACE. It is a good idea to do so because this file also contains
many defines that can be used with the HANDLEArrRIBUTES procedure.

Table 1-1 explains all the HANDLEATTRIBUTES parameters. In this table,
individual fields ·are labeled with the name of the corresponding define in
* SYMBOL/ ATTRIBUTE/INTERPRETER/INTERF ACE.

8600 0502-000 1-11

Accessing TaskAttributes

Parameter

TEXT

TEXTOFFSET

TEXTLENGTH

HOWl

DISPOSITION

1-12

Table 1-1. HANDLEATTRIBUTES Parameters

Explanation

The calling program must place the text of the task attribute assignments in this
parameter. The assignments must follow the syntax of a task equation list in .
WFL.

The calling program can use this parameter to specify the offset within the
TEXT buffer at which the attribute assignments begin. The offset is zero-relative
and expressed in units of bytes.

The calling program can use this parameter to specify the number of bytes to
be parsed starting at the location specified by the TEXTOFFSET parameter. If
TEXTLENGTH is 0, then TEXT is scanned until a null character is encountered.

The calling program can use this parameter to specify parsing control options.
The fields of this parameter have the following meanings:

[47:23]

[24:01]

[23:23]

[00:01]

Reserved. The value of this field must be O.

AIWARNINGSFATALF.

If I, and a warning or error is detected,
HANDLEATIRIBUTES returns without making the requested
assignments. The procedure result and the ERRLOC
parameter store information about the error or warning.

If 0, and a warning is detected, HANDLEATTRIBUTES
displays a warning message and then continues normally. If
an error is detected, HANDLEATIRIBUTES behaves as it
would if the value of this field were 1.

Reserved. The value of this field must be O.

AICOMPILEF.

If AICOMPILEF is I, compiler mode is enabled. This mode
makes it possible to assign task attributes to a compilation or
to the resulting object code file. Compilertask equations are
those that are prefixed by the word COMPILER or the name
of a compiler, such as ALGOL, PASCAL, and so on.

If AICOMPILEF is 0, then any task attribute assignments
preceded by a compiler prefix result in a syntax error.

For further information, refer to the following discussion of
the DISPOSITION parameter.

The calling program can use this parameter to specify whether the task
attribute assignments are to be applied. The effect of the DISPOSITION
parameter varies, depending on whether compiler mode is specified by the
AICOMPILEF field of the HOWl parameter.

continued

86000502-000

Parameter

86000502-000

Accessing Task Attributes

Table 1-1. HANDLEATTRIBUTES Parameters (cant.)

Explanation

The values of this parameter have the following meanings:

o AIATTACHV.

If HANDLEATTRIBUTES is invoked in compiler mode, then

• Compiler task equations are assigned to
TARGET.MYPPB. The compiler task equations in
TARGET. MYPPB are applied to TARGET when
TARGET.APPLYLIST is set to TRUE, or when TARGET is
used to initiate a process (whether the process is a
compiler or not).

• Noncompiler task equations are assigned as a nested
MYPPB value within TARGET.MYPPB. If TARGET is later
used to initiate a compiler process, the compiler process
reads the nested task equations from TARGET.MYPPB
and assigns them to the resulting object code file.

If HANDLEATTRIBUTES is invoked in noncompiler mode,
then

• Any compiler task equations receive an error.

• Noncompiler task equations are assigned to
TARGET.MYPPB. The equations in TARGET.MYPPB are
applied when TARGET.APPLYLIST is set to TRUE or
when TARGET is used in a process initiation statement.

1 AIAPPLYV.

If HANDLEATTRIBUTES is invoked in compiler mode, then

• Compiler task equations are applied directly to TARGET.

• Noncompiler task equations are assigned to
TARGET.MYPPB. If TARGET is later used to initiate a
compiler, the compiler applies the equations in
TARGET.MYPPB to the resulting object code file. Note
that the system never applies the TARGET.MYPPB
equations to TARGET, not even if TARGET.APPLYLIST is
set to TRUE or TARGET is used in a process initiation
statement.

If HANDLEATIRIBUTES is invoked in noncompiler mode,
then

• Any compiler task equations receive an error.

• Noncompiler task equations are applied directly to
TARGET. Nothing is written to TARGET.MYPPB.

continued

1-13

Accessing Task Attributes

Parameter

TARGET

ERRORLOC

1-14

Table 1-1. HANDLEATTRIBUTES Parameters (cant.)

Explanation

2 AISYNTAXONLYV.

If HANDLEATTRIBUTES is invoked in compiler mode, then
both compiler and noncompiler task equations are checked
for syntax. None of the equations are applied and nothing is
written to TARGEtMYPPB.

If HANDLEATTRIBUTES is invoked in noncompiler mode,
then any compiler task equations receive an error.
Noncompiler task equations are checked for syntax. None of
the equations are applied and nothing is written to
TARG Et MYPPB.

The calling program can use this parameter to provide the task variable to
which the task attribute assignments are applied. This parameter is ignored if
the value of the DISPOSITION parameter is AISYNTAXONLYV.

HANDLEATTRIBUTES uses this parameter to return error information to the
calling program. If field AIERRORF of the procedure result is 0, meaning that
no error occurred, then this parameter stores a O. If field AIERRORF has a
value of I, then ERRORLOC returns a value divided into the following fields:

[47:20]

[27:01]

[26:01]

[25:18]

[07:08]

This field is always O.

AI ERROFFSETV ALIDF.

If I, then the error is associated with a particular offset in
the input TEXT array. This offset is given in field
AI ERROFFSETF of the ERRORLOC parameter.

If 0, then the error is not associated with a specific offset. In
this case the AIERROFFSETF field does not store any offset.

This field is always O.

AI ERROFFSETF. This field stores the zero-relative offset of
the task attribute error in the TEXT parameter. This field is
meaningful only if the AIERROFFSETVALlDF field of the
ERRORLOC parameter stores a 1.

This field is always O.

continued

86000502-000

Parameter

Procedure Result

86000502-000

Accessing Task Attributes

Table 1-1. HANDLEATTRIBUTES Parameters (cont.)

Explanation

The HANDLEATTRIBUTES result contains general information about task
attribute errors. The value is divided into the following fields:

[47:08]

[39:16]

[23:16]

[07:05]

[02:01]

[01:01]

[00:01]

AITYPEF. The type of attribute for which the error was
detected. The possible values are as follows:

1 = FILECARDS task attribute

2 = Miscellaneous task attribute

4 = PRINTDEFAULTS task attribute

6 = LIBRARY task attribute

7 = DATABASE task attribute

AIATTNUMF. The number of the attribute for which the error
was detected. If field [47:08] of the procedure result
indicates that FILECARDS had an error, then AIATTNUMF
stores the number of the file attribute that caused the error.
Otherwise, AIAnNUMF stores the number of the task
attribute that caused the error. For file attribute numbers,
refer to the A Series File Attributes Programming
Reference Manual. For task attribute numbers, refer to
the discussion of the ERROR task attribute in Section 2,
"Task Attribute Descriptions."

AIERRNUMF. The error or exception number. Refer to
Table 1-2, "HANDLEATTRIBUTES Error Numbers," for a list
of these numbers and their meanings. This information also
appears in the file
*SYM Ball AnRIBUTE/1 NTERPRETER/I NTERFACE.

This field isalways O.

AIATTNUMVALIDF. If 1, then the error is associated with a
particular attribute in the input TEXT. In this case, the
AIATTNUMF field and the AITYPEF field are valid. If 0, the
error i.s not associated with a particular attribute and these
fields are notvalid.

AIWARNINGF. If 0, the error is fatal. If 1, it is a warning.

·AIERRORF. If 1, an error occurred. If 0, no error occurred
and none of the other fields in this result are valid.

1-15

Accessing Task Attributes

1-16

Table 1-2 explains the values of the numbers returned in field [23: 16] of the
HANDLEATTRIBUTES procedure result.

Table 1-2. HANDLEATTRIBUTES Error Numbers

Error Number

o
1-1000

1015

1017

1018

1019

1021

1023

1027

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

Meaning

No error or warning occurred.

It the error number is in this range, the error number is equal to the
HISTORYREASON task attribute value. For intormation about the value, .
refer to the description ot HISTORYREASON in Section 2, "Task Attribute
Descriptions."

A syntax error was detected.

An attribute mnemonic was expected.

A numeric value was expected.

An end-ot-text marker was encountered.

The same attribute has been aSSigned two values. This is a warning in
most cases, but it is an error tor the PRINTDEFAULTS attribute. It the
warning is ignored, the more recent value overwrites the previous value.

A right pa renthesis was expected.

A semicolon was expected (:).

A string over 256 characters long was specified.

An ending quotation mark (") is missing.

The maximum number was exceeded.

An illegal character·was used.

An illegal tile name was used.

An OPTION task attribute mnemonic was expected.

An attribute mnemonic was expected.

An illegal attribute mnemonic was used.

A left parenthesis was expected.

A real constant was expected.

The user part ot a file title must be 12 names or less.

The end of the statement was expected.

A task attribute was expected.

A compiler name was expected.

An equal sign (=) was expected.

A simple volume name was expected.

continued

86000502-000

86000502-000

Accessing Task Attributes

Table 1-2. HANDLEATTRIBUTES Error Numbers (cont.)

Error Number

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1072

1073

1074

1075

Meaning

A keyword was not recognized.

An attempt was made to assign a value to a read-only attribute.

Too many serial numbers were specified.

The serial number was too long.

A serial number was expected.

The serial number contained an illegal character.

This construct can be used only in a job heading.

An illegal resource value was specified.

. A number from 0 to 255 was expected.

This attribute is not valid in this context.

A com ma (,) was expected.

The word OTHERWISE or ONLY was expected.

A WFLSUPPORT fault occurred.

String constants are not allowed here.

This construct is not implemented.

There was an error in numeric constant evaluation.

The DATABASE attribute was expected.

An illegal name was specified.

A hyphen (-) or underscore (J cannot be the first character of an
unquoted name.

The family specification was invalid.

A file attribute was expected.

A print attribute or print modifier was expected.

A file equation for this file was previously specified; the previous equation
is ignored.

An invalid type was specified.

An invalid INTNAME file attribute value was specified.

The word UP was expected.

The word FILE was expected.

1-17

Accessing Task Attributes

Decoding Error Values with ATTRIBUTEMESSAGE

The ATTRIBUTEMESSAGE procedure translates the HANDLEATTRIBUTES
procedure result into a textual error message, suitable for display to a user.

ATTRIBUTEMESSAGE also allows you to specify the language in which the error
message should be displayed, an array to hold the error message, and the offset in the
array where the error message should start. ATTRIBUTEMESSAGE places the error
message at the requested location in the array, and updates the offset parameter to point
to the end of the error message.

The following is an ALGOL example of the way the WFLSUPPORT library declaration
and the ATTRIBUTEMESSAGE procedure declaration look in a calling program:

LIBRARY WFLSUPPORT (LIBACCESS=BYFUNCTION);

REAL PROCEDURE ATTRIBUTEMESSAGE
(ERRINFO,HOW4,LANGUAGE,LANGLENGTH,MSG,MSGOFFSET);

REAL ERRINFO,HOW4, LANGLENGTH, MSGOFFSET;
EBCDIC ARRAY LANGUAGE[*], MSG[*];
LIBRARY WFLSUPPORT;

Alternatively, you can use the $INCL UDE compiler option in your program to
automatically insert these declarations from the file *SYMBOL/ ATTRIBUTE/
INTERPRETER/INTERF ACE. It is a good idea to do so because this file also contains
many defines that can be used with the ATTRIBUTEMESSAGE procedure.

Table 1-3 explains all the ATTRIBUTEMESSAGE parameters. In this table,
individual fields are labeled with the name of the corresponding define in
*SYMBOL/ATTRIBUTE/INTERPRETER/INTERFACE.

Table 1-3. ATTRIBUTEMESSAGE Parameters

Parameter Explanation

ERRINFO

HOW4

1-18

The calling program must store the encoded error description in this parameter. The
format of this word must be the same as the procedure result returned by
HAN DLEATTRI BUTES.

The calling program can use this parameter to specify some aspects of the
ATTRIBUTEMESSAGE interface. This parameter is divided into the following values:

[47:04]

[43:43]

AIMESSAGEVERSIONF. This field stores the version
number of the ATTRIBUTEMESSAGE interface. For the
version supplied with this release, the value should be o.
Reserved. The value of this field must be o.

continued

86000502-000

Accessing Task Attributes

Table 1-3. ATTRIBUTEMESSAGE Parameters (cont.)

Parameter

LANGUAGE

LANG LENGTH

MSG

MSGOFFSET

Procedure Result

Explanation

[00:01] AI DISPLAYMESSAGEF.

If 1, ATTRIBUTEMESSAGE issues a DISPLAY statement
that causes the resulting error message to appear in the
MSG (Display Messages) system command display. (The
DISPLAYONLYTOMCS task attribute can limit the display
of the message.)

If 0, the error message does not appear in the MSG
display.

The calling program can use this parameter to specify the language in which the
error message is to be reported. Parsing of the language starts at element 0 of the
LANGUAGE value, although leading blanks are ignored. Parsing ceases when a null
character is encountered or when the number of characters specified by the
LANG LENGTH parameter have been parsed.

If the requested language is not supported on the system, a warning of
AILANGNOTAVAILABLEV is reported and the system default language is used.

The calling program can use this parameter to specify the maximum number of
characters in the LANGUAGE parameter to be parsed, starting at element 0 of the
LANGUAGE value. If LANG LENGTH is 0, the LANGUAGE parameter is ignored and
the LANGUAGE task attribute of the calling process is used instead.

ATTRIBUTEMESSAGE returns the decoded error message in this parameter. You
should take care that the array passed to this parameter is at least as long as the
sum of the initial MSGOFFSET value and the value of the AIMSGLENGTHV define in
*SYMBOl/ATTRIBUTE/INTERPRETER/INTERFACE. (The AIMSGLENGTHV define
specifies the maximum length message that can be returned by the current version
of ATIRIBUTEMESSAGE.)

The calling program can use this parameter to specify the offset Within the MSG
array at which the decoded message should begin. ATTRIBUTEMESSAGE updates
this parameter to return the offset of the null character that terminates the decoded
message.

ATTRIBUTEMESSAGE uses this parameter to report errors. The procedure result has
the same format as the HANDLEATTRIBUTES procedure result, as previously
described in this section.

The format of the message returned in MSG, the message parameter, is as follows when
the error pertains to a specific attribute (that is, when field AIATTNUMV ALIDF of the
ERRINFO parameter equals 1):

<attribute type> Attribute "<attribute name>": <error description>

For example:

Task Attribute "DECLAREDPRIORITY": Cannot recognize keyword

86000502-000 1-19

Accessing Task Attributes

If the error does not pertain to a specific attribute (that is, the AIATTNUMV ALIDF field
of the ERRINFO parameter equals 0), the message has the following format:

Attribute Error: <error description>

Examples

1-20

The following are examples of ALGOL programs that use the HANDLEATTRIBUTES
and ATTRIBUTEMESSAGE procedures.

Example 1: Setting Multiple Attributes.

The following interactive program asks a user to supply task attribute assignments. The
program then calls HANDLEATTRIBUTES to check the assignments for correctness
and apply them to a task variable. If there are no errors, the program uses the task
variable to initiate a task. If there are errors, the program uses ATTRIBUTEMESSAGE
to .display an error message.

100 BEGIN
110 $INCLUDE ATTINT = "*SYMBOL/ATTRIBUTE/INTERPRETER/INTERFACE II

120 TASK T;
.130 FILE TERM(KIND = REMOTE,FILEUSE=IO);
140 EBCDIC ARRAY TEXT[0:419], LANG[0:119], MYPPBVAL[0:599];
150 REAL ERRORLOC, ATTERR, MSGERR, ERROFFSET, HOWl;
160 PROCEDURE UTILRUN;
170 EXTERNAL;
180
190 WRITE(TERM,//,"PLEASE ENTER YOUR TASK EQUATIONS");
200 REPLACE TEXT BY 48"00 11 FOR 420;
210 READ(TERM,420,TEXT);
220 ATTERR := HANDLEATTRIBUTES(TEXT,0,0~HOW1,AIAPPLYV,T,ERRORLOC);
230 IF ATTERR = 0 THEN
240 CALL UTILRUN [T]
250 ELSE
260 BEGIN
270 DISPLAY(TEXT);
280 IF ERRORLOC.AIERROFFSETVALIDF = 1 THEN
290 BEGIN
300 REPLACE TEXT BY II 1/ FOR ERRORLOC.AIERROFFSETF,
310 IIAII, 481/00";
320 DISPLAY(TEXT);
330 END;
340 REPLACE TEXT BY 11*1/ FOR 3;
350 ERROFFSET:= 3;
360 REPLACE LANG BY T.LANGUAGE;
370 MSGERR:= ATTRIBUTEMESSAGE(ATTERR,1,LANG,0,TEXT,ERROFFSET);
380 END;
390 END.

The following is an example of the interaction between a user and this program.
The user runs the program from a CANDE session. Because the user misspells the

86000502-000

Accessing Task Attributes

TASKV ALUE task attribute, the program returns an error message and does not
initiate the requested task.

User: RUN ATTINT/TEST
Response: #RUNNING 9807
Response: #?
Response: PLEASE ENTER YOUR TASK EQUATIONS
User: NAME=OBJECT/ALGOL/TASK;TASKVALUW=R;PRIORITY=60;
Response: #9807 DISPLAY:NAME=OBJECT/ALGOL/TASK;TASKVALUW=R;PRIORITY=60;
Response:
Response: #9807 DISPLAY: /\

Response: #9807 DISPLAY:***Attribute error: Task attribute expected.
Response: #ET=27.6 PT=0.1 10=0.1

Example 2: Inserting Attributes into an Object Code File

Programs that initiate a compiler can cause attributes to be inserted into the resulting
object code file. These attributes are applied at task initiation time whenever the
object code file is executed. The following example shows how this is done using the
HANDLEATTRIBUTES and ATTRIBUTEMESSAGE procedures.

100 BEGIN
110 $INCLUDE ATTINT=II*SYMBOL/ATTRIBUTE/INTERPRETER/INTERFACE. II

120 TASK CTASK;
130 ARRAY SHEET[0:32];
140 EBCDIC ARRAY TEXT[0:299J;
150 REAL ERRLOC, ATTERR, MSGERR, MSGOFFSET;
160
170 PROCEDURE ALGOLCOMPILER(SHEET);
180 ARRAY SHEET[*];
190 EXTERNAL;
200
210 REPLACE TEXT BY
220 II ALGOL NAME=*SYSTEM/ ALGOL ON DISK; II
230 IIALGOL FILE CARD (KIND=DISK, TITLE=ALGOL/TASK); II
240 II ALGOL FI LE CODE (KIND=DISK, TITLE=OBJECT /ALGOL/TASK) ; II
250 IIMAXPROCTIME=20;TASKVALUE=3;1I
260 IIFILE IN=DAILY/DATA; FILE OUT(KIND=DISK,TITLE=OUTPUT)" 48"00 11

;

270 ATTERR:=HANDLEATTRIBUTES(TEXT,0,0,1,AIAPPLYV,CTASK,ERRLOC);
280
290 REPLACE SHEET BY 0 FOR 33 WORDS;
300 SHEET[8J := VALUE(LIBRARY); % This statement specifies the
310 % object code file disposition.
320 SHEET[0J := 0 & 1[47:1J;
330
340 CALL ALGOLCOMPILER(SHEET) [CTASK];
350
360 END.

In this example, the task assignments at lines 220 through 240 are applied to the
compilation, because they are preceded by the keyword ALGOL. The task assignments

86000502-000 1-21

Accessing Task Attributes

at lines 250 through 260 are assigned to the resulting object code file, because they have
no compiler name prefixing them.

System Administrator Access to Task Attributes
The system administrator can establish defaults and limits on the use of various task
attributes by various users. These defaults and limits aid in preserving system security
and managing workload.

Assigning Task Attributes to Usercodes

1-22

The system administrator can create usercode definitions in the USERDATAFILE
by running either MAKEUSER or a DCALGOL program that calls the USERDATA
function. By creating a usercode definition, the system administrator makes that
usercode a legal value for the USERCODE task attribute. By suspending or removing
the usercode definition, the system administrator can prevent processes from being
initiated with that USERCODE task attribute value.

The usercode definition can include one or more usercode attributes. Several of these
usercode attributes provide values that can be inherited by task attributes of processes
that run with that usercode. The following task attributes can be affected by the
values of usercode attributes: ACCESSCODE, CHARGE, CLASS, CONVENTION,
DEPTASKACCOUNTING, DESTNAME, FAMILY, FILEACCOUNTING, LANGUAGE,
PRINTDEFAULTS, PRIORITY, SA VEMEMORYLIMIT, and TEMPFILELIMIT. These
can be referred to as the usercode-related task attributes of a process.

These task attributes are not always affected by their corresponding usercode attributes.
The system administrator might not have included all the possible usercode attributes in
the usercode definition. Furthermore, the usercode attributes are inherited only in the
following circumstances:

• U sercode attributes can be inherited by a WFL job that includes a USERCODE
assignment in the job attribute list. Any usercode-related task attributes that are
not assigned values in the job attribute list receive their values from the usercode
attributes.

• U sercode attribute values are inherited by CANDE or MARC session attributes
at log-on time. These session attributes are inherited by any processes initiated
from the session, unless the user takes actions to change the session attributes or
uses task equations to assign different task attributes to a process. (Refer to the
discussion of tasking from interactive sources in the A Series Task Management
Programming Guide.)

The usercode-related task attributes are also inherited from a parent by its offspring,
unless specifically overridden. In this way, a usercode attribute can be propagated
through an entire process family.

For further details about the inheritance rules for usercode-related task attributes,
refer to the descriptions of each of these task attributes in Section 2, "Task Attribute
Descriptions. "

86000502-000

Accessing Task Attributes

Assigning Job Queue Attributes

The system administrator can use job queue definitions to affect the task attributes of
WFL jobs and their descendants. The job queue definitions are created by way of the
MQ (Make or Modify Queue) system command. Eachjob queue definition can include
job queue attributes that specify default or limiting values for task attributes of jobs rlUl
from that queue. The job queue attributes correspond mostly to task attributes that
impose limits on resource usage, such as MAXPROCT1ME and MAXIOTIME. For a
summary of the effects of job queue attributes on task attributes, refer to the A Series
Task Management Programming Guide.

System Access to Task Attributes
The system software plays several roles in the assigmrient of task attribute values. The
system provides values for task attributes in some cases, resolves conflicting assignments
from various sources, and issues errors when an attempt is made to access an attribute
incorrectly.

Making Automatic Assignments

The system software provides values for task attributes that have not been specifically
assigned values by any of the other methods discussed in this section. The following
subsections discuss the types of assignments that the system software makes.

Providing Default Values

The default value for a task attribute is the value it assumes if no other factors influence
the task attribute value. For Boolean task attributes, the default is typically FALSE; for
integer or real task attributes, zero; for string task attributes, a null string.

The default values for all the task attributes are documented in Section 2, "Task
Attribute Descriptions."

Providing Inherited Values

Inheritance is the transfer of a task attribute value from a process to one of its
descendants. Different inheritance rules are applied to different task attributes; some
can inherit values, but others cannot. The inheritance rules for each task attribute are
included in the task attribute descriptions in Section 2, "Task Attribute Descriptions."

Some of the basic task attributes that can be inherited are USERCODE,
ACCESSCODE, CHARGE, and FAMILY The inheritance properties save the
programmer the trouble of having to assign these task attributes for each member of the
process family. A single assignment to the job can be propagated to all its descendants.

The term inheritance is also loosely applied to the transfer of values from job queue
attributes, session attributes, or usercode attributes to a process. These types of

86000502-000 1-23

Accessing Task Attributes

inheritance are discussed under" Assigning Job Queue Attributes," "Assigning Task
Attributes to a Session," and "Assigning Task Attributes to Usercodes" in this section.

Updating Task Attribute Values

During process execution, the system automatically updates the values of certain
task attributes. These task attributes return information about dynamic aspects of
process status and history. One example is the STATUS task attribute, whose value is
updated when the process becomes scheduled, suspended, resumed, or terminated.
Other examples are the task attributes that record resource usage, including
ACCUMPROCTIME and ACCUMIOTIME. These automatic updates make it possible to
use these task attributes to monitor the current state of a process as it executes.

Resolving Conflicting Values

When a process is initiated, the system software evaluates the task attribute values
submitted from the various sources discussed in this section. Where different sources
have assigned conflicting values to the same task attribute, the system chooses the value
submitted from the most dominant source.

The rules used to determine which assignment is most dominant are called overwrite
rules. The system applies different overwrite rules to different task attributes.
However, most task attributes follow either standard overwrite rules or object code file
dominant overwrite rules. The following subsections describe standard and object code
file dominant overwrite rules for various types of processes.

Section 2, "Task Attribute Descriptions," includes information about the overwrite rules
for each task attribute. That section states whether each task attribute follows standard
or object code file dominant overwrite rules. For task attributes that follow irregular
rules, the exact behavior of the task attributes is explained.

Overwrite Rules for WFL Jobs

1-24

The following are the various sources that can contribute to the initial task attribute
values of a WFL job. The sources are listed in order from most dominant to least
dominant, according to standard overwrite rules:

1. Assignments in the job attribute list of the WFL job.

2. Usercode attributes, ifa USERCODE assignment is included in the job attribute list
of the WFL job.

3. Attributes of the CANDE or MARC session, if the WFL job was initiated from a
session.

4. Job queue defaults. (By contrast, job queue limits do not affect the initial task
attribute values of a WFL job. They simply affect the selection of a queue for the
job.)

5. The task attribute default.

86000502-000

Accessing Task Attributes

Task attributes cannot be assigned to the object code file of a WFL job because a WFL
job has no object code file. Object code file dominant task attributes, when applied to a
WFL job, follow the standard overwrite rules listed previously.

The following is one illustration of the overwrite rules for WFL jobs. Suppose the job
attribute list of a certain WFL job includes a PRINTDEFAULTS assignment, followed
by a USERCODE assignment. Further, suppose that the usercode definition in the
USERDATAFILE has aPRINTDEFAULTS value associated with it. In this case, only
the PRINTDEFAULTS value specified in the job attribute list is used, even though the
USERCODE assignment statement occurred last.

Overwrite Rules for Session Tasks

The following are the various sources that can contribute to the initial task attribute
values of a task initiated from a CANDE or MARC session. The sources are listed in
order from most dominant to least dominant, according to standard overwrite rules:

1. Task equations appended to the initiation statement

2. Inheritance from the attributes of CANDE or MARC sessions

3. Assignments to the object code file

4. The task attribute default

For an object code file dominant task attribute, the order of dominance is the same,
except that item 3, assignments to the object code file, is moved to the head of the list.

Overwrite Rules for Other Processes

The following are the various sources that can contribute to the initial task attribute
values of a process initiated from a WFL, ALGOL, or COBOL74 process. The sources
are listed in order from the most dominant to the least dominant, according to standard
overwrite rules:

1. Task equations appended to the initiation statement

2. Task attribute assignments to the task variable outside the task variable declaration

3. Task attribute assignments in the task variable declaration

4. Assignments to the object code file

5. Inheritance from the parent

6. The task attribute default

For an object code file dominant task attribute, the order of dominance is the same,
except that item 4, assignments to the object code file, is moved to the head of the list.

Task AHribute Errors

Task attribute errors result from an attempt to access a task attribute in an improper
manner. The most basic errors are caught at compile time. These include type

86000502-010 1-25

Accessing Task Attributes

1-26

mismatches that occur, for example, from assigning a string to an integer-valued task
attribute.

Other task attribute errors are caught only at run time. For example, a run-time error
can result from assigning a task attribute a value that is

• Outside the allowed range. For example, if a particular attribute has a range of 1 to
9999, then an assignment of 10500 might cause an error.

• Assigned at the wrong time. Some attributes can be assigned only before initiation;
after initiation, assignment causes a run-time error.

• Referring to a nonexistent entity. For example, an error results from assigning a
DESTSTATION value that does not correspond to a valid Logical Station Number
(LSN).

• Inconsistent with a related attribute. For example, the USERCODE and CHARGE
task attributes must be compatible.

An attempt to read a task attribute can also result in an error in some cases. For
example, if the private process bit of the OPTION task attribute is set, then other
processes are prevented from reading (or assigning) the task attributes of this process.

Some t~k attributes can cause a delayed error if assigned an invalid value. For example,
the STATION task attribute can be assigned a value that refers to a nonexistent station.
No error occurs until the process attempts to open a remote file.

The process that attempted to access the task attribute can be referred to as the
accessing process. The process whose task attribute was accessed can be referred to as
the receiving process. The accessing process and the receiving process can be the same,
for example, if the MYSELF task variable is used.

If the attempted access is illegal, it is the accessing process that incurs the error. If
the accessing process is nonprivileged, almost all task attribute errors are fatal. If
the accessing process is privileged or a message control system (MCS), then errors in
accessing event-valued or file-valued task attributes are generally fatal, but most other
task attribute errors are not fatal.

The ERROR task attribute of the receiving process stores the attribute number of the
task attribute that was being accessed when the error occurred. The accessing process
can read the ERROR task attribute of the receiving process to determine whether the
last task attribute_access was successful. The system erases the ERROR value each
time it is read. TASKERROR is another task attribute that provides error information.
Unlike ERROR, the TASKERROR value is not erased when it is read.

For further details about these task attributes, refer to "ERROR" and "TASKERROR"
in Section 2, "Task Attribute Descriptions."

The operator or the user is informed of task attribute errors by the display of error
messages for the process. Many task attribute error messages are documented in this
manual in the "Run-Time Errors" part of many task attribute descriptions. All the
errors documented in this manual are also included in the index for easy reference.

86000502-010

Accessing Task Attributes

The error messages that are displayed for a process are somewhat more informative if
the object code file of the process was compiled with the LINEINFO compiler option
set. This option causes the sequence number of each record in the source program to
be stored in the object code file. When an error occurs, the sequence number of the
statement that incurred the error is included at the end of the error message.

If LINEINFO was not set, then error messages display the code address instead of the
sequence number of the statement that incurred the error. You can interpret the code
address by referring to the printout produced by the compiler if the LIST compiler
option was set. For an example of this printout, refer to the discussion of process history
in the A Series Task Management Programming Guide.

8600 0502-010 1-27

1-28 8600 0502-010

Section 2
Task Attribute Descriptions

The A Series task attributes provide a wide variety of options for process monitoring and
control. Using task attributes, you can control various aspects of file usage, memory
usage, resource usage, and communication with other processes or with operators. You
can also use task attributes to determine the current status of a process or discover how
it terminated.

This section includes complete descriptions of all the task attributes that are
supported for customer use as of the current Mark release. Note that the file
SYMBOL/ATTABLEGEN, which lists all the task attributes,includes several that·are
not documented in this section. These undocumented task attributes are intended
only for internal use. Attempts by customers to use these task attributes result in
compile-time errors, run-time errors, or other unde~ed results.

Choosing the Right Task Attribute
At this time, about a hundred task attributes have been implemented on A Series
systems. Each task attribute is designed to assume reasonable default or inherited
values. Therefore, it is not necessary for you to learn the functions of all the task
attributes. However, by studying the task attributes related to a particular area of
process contro~ you can learn how to take advantage of the abilities the system provides
in that area.

Table 2-1, "Task Attribute Functional Groupings," can help you find the task attributes
that are relevant to each aspect of process control. For details about any of these task
attributes, refer to the individual descriptions in this section.

Table 2-1. Task Attribute Functional Groupings

Category Attribute

Billing CHARGE

USERCODE

Databases DATABASE

MAXWAIT

continued

86000502-000 2-1

Task Attribute Descriptions

Table 2-1. Task Attribute Functional Groupings (cont.)

Category Attribute

Data comm AUTOSWITCHTOMARC

DESTNAME

D ESTSTATI ON

DISPLA YON L YTOMCS

IN H ERITMCSSTATUS

LANGUAGE

MCSNAME

ORGUNIT

SOURCEKIND

SOURCENAME

SOU RCESTATION

STATION

SUPPRESSWARNING

TANKING

TASKWARNINGS

Debugging OPTION

TADS

TASKFILE

Files AUTORESTORE

FAMILY

FILEACCESSRULE

FILECARDS

OPTION (the AUTORM option)

continued

2-2 86000502-000

Task Attribute Descriptions

Table 2-1. Task Attribute Functional Groupings (cont.)

Category Attribute

History DEPTASKACCOUNTING

ERROR

FILEACCOUNTING

HISTORY

HISTORYCAUSE

H ISTORYREASON

HISTORYTYPE

HSPARAMSIZE

OPTION

STACKHISTORY

STATUS

STOPPOINT

SU PPRESSWARN ING

TASKERROR

TASKWARNINGS

Identification JOBNUMBER

MIXNUMBER

NAME

continued

86000502-000 2-3

Task Attribute Descriptions

Table 2-1. Task Attribute Functional Groupings (cont.)

Category Attribute

I nterprocess ACCEPTEVENT
Communication

EXCEPTION EVENT

EXCEPTIONTASK

LOCKED

OPTION (the Uprivate process" option)

PARTNER

PARTN EREXISTS

STATUS

SWI through SW8

TARGET

TASKLIMIT

TASKSTRING

TASKVALUE

TYPE

Job Summaries JOBSUMMARY

JOBSU MMARYTITLE

NOJOBSUMMARYIO

OPTION (the NOSUMMARY option)

Libraries LIBRARY

LlBRARYSTATE

LlBRARYUSERS

STATUS

Localization CONVENTION

LANGUAGE

Logging DEPTASKACCOUNTING

FILEACCOUNTING

continued

2-4 86000502-000

Task Attribute Descriptions

Table 2-1. Task Attribute Functional Groupings (cant.)

Category Attribute

Messages DISPLAYONlYTOMCS

LANGUAGE

SUPPRESSWARNING

TASKWARNINGS

Memory CORE
Management

SAVEM EMORYLI MIT

STACKLIMIT

STACKSIZE

Printer Output BACKUPFAMILY

BDNAME

DESTNAME

DESTSTATION

OPTION (the BACKUp, BDBASE, and
NOSUMMARYoptions)

PRINTDEFAULTS

TASKFILE

Remote Tasking HOSTNAME

ITINERARY

Resource Usage ACCUMIOTIME
Data

ACCUMPROCTIME

ELAPSEDTIME

INITPBITCOUNT

INITPBITTIME

OTHERPBITCOUNT

OTHERPBITIIME

TEMPFILEMBYTES

continued

86000502-010 2-5

Task Attribute Descriptions

Table 2-1. Task Attribute Functional Groupings (cont.)

Category Attribute

Resource Usage DISKLIMIT
Limits

ELAPSEDLIMIT

MAXCARDS

MAXIOTIME

MAXLINES

MAXPROCTIME

MAXWAIT

PRIORITY

RESOURCE

SAVEMEMORYLIMIT

STACKLIMIT

TASKLIMIT

TEMPFILELIMIT

WAITLIMIT

Restarting BRCLASS
Processes

CH ECKPOI NT ABLE

RESTART

RESTARTED

Security ACCESSCODE

FILEACCESSRULE

INHERITMCSSTATUS

USERCODE

Task "Attribute Usage APPLYLIST

MYPPB

ERROR

TASKERROR

continued

2-6 86000502-010

Category

WFL Jobs

Task Attribute Descriptions

Table 2-1. . Task Attribute Functional Groupings (cont.)

Attribute

CLASS

DECKGROUPNO

FETCH

STARTTIME

For.mat of the Descriptions

Name

Type

Units

Range

Each task attribute description in this section includes information about certain
characteristics of task attributes. The following subsections explain how these
characteristics are· presented in the task attribute descriptions.

Each task attribute description begins with a heading that gives the name of the task
attribute. A task attribute is generally referred to by the same name from all the
sources that can access that attribute. The only exception to this rule is that several
task attributes have synonyms and some sources recognize only the synonym. Refer to
the "Synonym" discussion in this section.

The "Type" part of the description indicates the type of data that is stored in the task
attribute. Almost all task attributes fall into one of the following types: Boolean,
event, file, integer, mnemonic, real, string, or task. A few other task attributes, such as
OPTION and RESOURCE, are of irregular types. For details about how these types are
accessed from the various languages, refer to "Programmer Access to Task Attributes"
in Section 1, "Accessing Task Attributes.'"

The "Units" part 'of the description specifies, for either a real or integer task attribute,
the units that are measured by the task attribute value: seconds, microseconds, words,
and so on.

The "Range" part of the description defines the legal values for the attribute. For
example, for a mnemonic attribute, the range consists of all the valid mnemonic values

86000502-000 2-7

Task Attribute Descriptions

2-8

for the attribute. For an integer attribute, the range defines the upper and lower limits
of the integers allowed (for example, 1 through 256).

In some cases, the range is defined by a metatoken. A metatoken is a word or phrase
that is enclosed within angle brackets, as in the following example: < simple name> .
For such items, a railroad diagram is used to describe the exact range of the task
attribute values. If a metatoken is referred to by only one task attribute description, .
then the railroad diagram for that metatoken is given in the description of that task
attribute. Metatokens that are referred to by more than one task attribute description
are defined in the following syntax discussion. For information about how to read these
diagrams, refer to Appendix A, "Understanding Railroad Diagrams."

Syntax

<digit>

Anyone of the 10 Arabic numerals 0 through 9.

<family name>

-<nonquote i dent i fi er>·-------------------------l

<hyphen>

The hyphen character (-).

< identifier>

~<nonquote identifier>

L II --.L/17\-<nOnquote EBCDIC character>l IIJ
<name>

r+-' 1
---1-1 12\-<s impl e name>>---L------------~-----__I

<nonquote EBCDIC character>

Any uppercase or lowercase letter, number, or special character except a quotation
mark (").

<nonquote identifier>

i/17\--r-<uppercase letter>>-. -,-.L-_____________ --I

L<digit>>------

<password>

-<nonquote i denti fi er>'-------------------1

86000502-000

Default

<simple name>

~<uppercase letter>
L<di git>-------'

<title>

Task Attribute Descriptions

~--------------------~
116\1<uppercase letter>

<di gi t>------I
<hyphen >'--------1
<underscore>-----'

r~ I -----,
--.----------------.--'-/12\-<s i mp 1 e name>--'---------, l= i --<usercode>--) -J
4-.~L--O-N---<f-a-m-i-ly--n-am-e->-J'------------------------------------I

< underscore>

The underscore character (J.

<uppercase letter>

Anyone of the 26 uppercase characters A through Z.

<usercode>

-<nonquote i dent i fi er>'------------------------------------I

The "Default" part of the description lists the value that the task attribute assumes if
the attribute does not inherit its value and is not assigned a value. For a read-only task
attribute, this is the value the task attribute returns if interrogated before initiation.

For many string task attributes, the default listed is null string. If this default value is
read from Work Flow Language (WFL), a string of zero length ("") is returned. However,
if this default value is read from ALGOL or COBOL 74, a string that contains a single
period (",") is returned.

Read Time

The "Read Time" part of the description defines whether and when the task attribute
value can be interrogated by a program. The following are the possible read time values:

• Anytime. The task attribute of the task variable can be read before the process is
initiated, while it is running, or after termination.

• Anytime; accurate after initiation. The task attribute can be read at any time, but
does not receive its actual value until the process is initiated.

• Anytime; accurate while in use. The task attribute can be read at any time, but is
reset to its default when the process terminates.

86000502-000 2-9

Task Attribute Descriptions

• N ever. The task attribute cannot be read. Such an attribute is called write-only.

• Only while in use. The task attribute can be read only for an in-use process. That
is, the task attribute cannot be read before the process is initiated or after it is
terminated.

Note that inheritance, object code file assignments, and run-time assignments can cause
the values of many attributes to change at initiation time. Therefore, any value that is
read before initiation might not reflect the value that the process actually receives.

Write Time

The "Write Time" part of the description defines whether and when the task attribute
can be assigned a value by a program. The following are the possible write time values:

• Anytime. The task attribute of the task variable can be assigned before the process
is initiated, while it is running, or after termination.

• Anytime; effective before initiation. The task attribute value can be assigned at any
time without incurring an error. However, assignments made after initiation are
ignored.

• Before initiation. The task attribute must be assigned in one of the following ways:,

An assignment to the task variable before the process is initiated.

A task equation appended to the statement that initiates the process.

An assignment in the job attribute list of a WFL job. The job attribute list
immediately follows the job heading at the start of the job. These assignments
are applied before the job begins execution.

An assignment to the object code file of the process. Such assignments can be
appended to the WFL or CANDE COMPILE statements or can be made to an
existing object code file by way of the WFLMODIFY statement.

• Never. The task attribute cannot be assigned. Such an attribute is called read-only.

Inheritance

2-10

The "Inheritance" part of the description explains whether the task attribute can inherit
its value from the equivalent task attribute of an ancestor process or from ajob queue
attribute, session attribute, or usercode attribute.

If a task attribute is described as being inherited from the parent, then that attribute
is inherited both by dependent processes and independent processes, unless otherwise
stated.

Although inheritance rules are described in a definite manner, bear in mind that
inherited values can be overriddeh by several other types of explicit and implicit
assignments. Refer to "Resolving Conflicting Values" in Section 1, "Accessing Task
Attributes," for more information.

86000502-000

Task Attribute Descriptions

Overwrite Rules

The "Overwrite Rules" part of the description specifies which of the possible sources for
task attribute values takes precedence at initiation time if there is a conflict. For each
task attribute, the overwrite rules are listed as standard or as object code file dominant
or else described in detail. The standard overwrite rules and object code file dominant
overwrite rules are discussed under "Resolving Conflicting Values" in Section 1,
"Accessing Task Attributes."

Host Services

The "Host Services" part of the description states whether the task attribute is
supported by Host Services. If the task attribute is supported, then it is possible for
a process running on one host system to access this attribute of a process running on
another host system. If the task attribute is not supported, then it is not possible to use
the task attribute across hosts.

For a centralized list of the task attributes supported by Host Services, refer to the
discussion of tasking across multihost networks in the A Series Task Management
Programming Guide.

Attribute Number

The "Attribute Number" part of the description specifies the number used to identify
the task attribute if an errqr occurs when a process accesses that task attribute. If such
an error occurs, the ERROR task attribute stores the attribute number of the task
attribute that was being accessed when the error occurred.· A list of task attributes, in
numeric order, is given in the discussion of the ERROR task attribute in this section.

Synonym

The "Synonym" part of the description lists an alternate name for the task attribute, if
there is one. For the most part, synonyms were implemented because a more concise or
more descriptive name was invented after the task attribute was originally implemented.
The "Name" part of the task attribute description gives the preferred name for the task
attribute. The "Synonym" part lists the nonpreferred name. Most languages allow you
to use either name for the task attribute.

Some customers might be familiar with task attributes under the nonpreferred names.
Table 2-2 summarizes the preferred and nonpreferred names for the benefit of these
readers.

86000502-000 2-11

Task Attribute Descriptions

Nonpreferred Name

BACKUPDESTINATION

BACKUPPREFIX

CHARGECODE

COREESTIMATE

DECLAREDPRIORITY

FILE.

INITIATOR

IOTIME

OPTIONS

ORGHOSTNAME

PRINTLIMIT

PROCESSIOTI ME

PROCESSTIME

PUNCHLIMIT

QUEUE

STACK

STACKNO

TARGETTIME

TASKATTERR

VALUE

Table 2-2. Task Attribute Synonyms

Preferred Name

DESTNAME

BDNAME

CHARGE

CORE

PRIORITY

FILECARDS

STATION

MAXIOTIME

OPTION

Deimplemented; use the leftmost part of the
ITINERARY attribute value instead.

MAXLINES

ACCUMIOTIME

ACCUMPROCTI M E

MAXCARDS

CLASS

STACKSIZE

MIXNUMBER

TARGET

ERROR

TASKVALUE

Restrictions

2-12

Most task attributes can be accessed by ALGOL, APLB, COBOL(68), COBOL74, PL/I,
and WFL. However, a few of the task attributes are not available from one or more of
these sources. For example, WFL cannot access event-valued task attributes. ALGOL
and COBOL74 cannot use the STARTTIME and FETCH task attributes, which are
specific to WFL. If such language restrictions apply to an attribute, they are discussed in
the "Restrictions" part of the task attribute description.

A limited subset of the task attributes can be accessed from commands in a CANDE or
Menu-Assisted Resource Control (MARC) session. Such restrictions are not documented
in the task attribute descriptions. For lists of the task attributes that can be accessed
from CANDE and MARC sessions, refer to the discussion of tasking from interactive
sources in the A Series Task Management Programming Guide.

86000502-000

Task Attribute Descriptions

Explanation

The "Explanation". part of the task attribute description summarizes the function of
the task attribute. In many cases, relevant background information, helpful hints, or
cautions are also provided.

Examples

Some of the task attribute descriptions include an "Examples" part, generally because
they are unusual in some way. For examples of how to access most types of task
attributes from programs, refer to "Programmer Access to Task Attributes" in Section 1,
"Accessing Task Attributes. "

Run~Time Errors

1'he "Run-Time Errors" part of the task attribute description discusses task attribute
access errors that occur when the program is executed rather than when it is compiled.
In addition, some errors that are closely related to the task attribute are discussed. For
example, the errors for exceeding resource limits are documented.

Run-time errors are usually fatal for nonprivileged processes. However, they are not
fatal for privileged processes or message control systems (MeSs), unless specifically
stated in the text.

The index at the end of this manual includes page references for all the error messages
that are discussed in this manual.

Individual Descriptions
U nisys A Series task attributes are presented in alphabetical order throughout the rest
of this section.·

86000502-000 2-13

ACCEPTEVENT

ACCEPTEVENT

2-14

Type Event

Units Not applicable

Range HAPPENED, NOT HAPPENED

Default NOT HAPPENED

Read Time Anytime

Write Time Never

Inheritance None

Overwrite Rules None (read-only)

Host Services Not supported

Attribute Number 100

Synonym None

Restrictions Not available in WFL or APLB

Explanation

The ACCEPTEVENT task attribute accesses a predeclared event called the accept event
that is associated with each process. The accept event is caused by the system whenever
an operator enters an AX (Accept) system command for the process. A program can
conveniently use this attribute in a statement that waits on several events, one of which
is the ACCEPTEVENT task attribute, as in the following ALGOL example:

WAITANDRESET(EVNTl,EVNT2,MYSELF.ACCEPTEVENT);

A process can also attach its ACCEPTEVENT to an interrupt, in which case the
interrupt is executed whenever an operator enters an AX command for the process.

A process can access only its own accept event. For example, a process cannot
interrogate or wait on the value of the accept event of its parent. A process that
attempts to do so receives a run-time error and terminates abnormally.

For more information about the AX command and about events, refer to the A Series
Task Management Programming Guide.

Run-Time Errors

NON·LOCAL ACCEPTEVENT

A process attempted to access the ACCEPTEVENT task attribute of another process.
The accessing process is discontinued with mSTORYCAUSE = 2 (PROGRAMCAU
SEY) and HISTORYREASON = 137 (NONLOCALACCEPTEVENTV).

86000502-000

ACCEPTEVENT (cont.)

ACCEPTEVENT ATTRIBUTE IS READONLY

A process attempted to assign an event variable to the ACCEPTEVENT task
attribute. The process, if nonprivileged, is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) and HISTORYREASON = 9 (ATTREADONLyv).

86000502-000 2-15

ACCESSCODE

ACCESSCODE

2-16

Range

< access code assignment>

Type

Units

Range

Default

Read·Time

Write Time

Inheritance

Overwrite Rules

Host Services

Attribute Number.

Synonym

Restrictions

String

Not applicable

<accesscode assignment>

Null string

Anytime

Anytime

From parent

Object code file dominant

Supported

61

None

None

-<accesscode>- / -<accesscode password>-------------l

< accesscode >
< accesscode password>

These are both nonquote identifiers.

Explanation

The ACCESSCODE task attribute affects the ability of a nonprivileged process to access
files that have associated guard files. A guard file can specify that only processes with a
certain accesscode are allowed to access the file. For information about guard files, refer
to the A Series Security Features Operations and Programming Guide.

An accesscode password must 'be included in the value assigned to ACCESSCODE.
However, the accesscode password is not included in the value returned when
ACCESSCODE is read.

8600 0502-000

ACCESSCODE (cont.)

The system performs validation to determine whether the ACCESSCODE value for
a process is compatible with the USERCODE task attribute value. When you assign
ACCESSCODE to a task variable that is not in use, the system does not perform this
validation until the task variable is used in a process initiation statement. When you
assign an ACCESSCODE value to an in-use process, the system performs the validation
immediately. The following is an outline of this validation:

1. If the process has a nonnull ACCESSCODE value, the system compares this·
value with the ACCESSCODELIST usercode attribute. If the ACCESSCODE
value does not correspond to any of the accesscode/accesscode-password pairs
in the ACCESSCODELIST, the system discontinues the process and displays a
"SECURITY VIOLATION" message.

2. For a WFL job, the WFL compiler checks the usercode of the job to see if the
ACCESSCODENEEDED usercode attribute is set. If it is, the WFL compiler gives
a syntax error if the ACCESSCODE value of the job is null or does not correspond
to any of the values in the ACCESSCODELIST usercode attribute. (A WFL job
can receive an ACCESSCODE value at compile time either through inheritance or
through an assignment in the job attribute list.)

If you want to change the USERCODE value of an in-use process to a different usercode
that requires a different accesscode, you should generally make the USERCODE
assignment first and the ACCESSCODE assignment second. Refer to tpe USERCODE
description later in this section for details.

Examples

The following are examples of ACCESSCODE assignment and interrogation in WFL.
The string variable STRV AR receives the value TDOT.

TVAR (ACCESSCODE = TOOT / ALTO);
STRVAR := TVAR (ACCESSCODE);

The following is an example of ACCESSCODE assignment in ALGOL:

REPLACE TVAR.ACCESSCODE BY IITDOT/ALTO. II ;

The following is an example of ACCESSCODE assignment in COBOL74:

CHANGE ACCESSCODE OF MYSELF TO IITDOT/ALTO. II ;

Run-Time Errors

ACCESSCODE ATTRIBUTE INCORRECT SYNTAX

An attempt was made to assign ACCESS CODE a value that did not follow the
proper format of < nonquote identifier> I < nonquote identifier>. The process, if
nonprivileged, is discontinued with mSTORYCAUSE = 2 (PROGRAMCAUSEV) and
HISTORYREASON = 131 (INCORRECTSYNTAXV).

86000502-000 2-17

ACCESSCODE (cont.)

2-18

SECURITY VIOLATION

An attempt was made to assign an accesscode that does not exist, does not match
the accesscode password, or is not,allowed for this usercode. The process, if
nonprivileged, is discontinued with HISTORYCAUSE = 2 (PROGRAMCAUSEV) and
HISTORYREASON = 29 (SECURITYERRORV)'. The following entry is made in the
system log: "INVALID TASK ATTRIBUTE: ACCESSCODE".

86000502-000

ACCUMIOTIME

ACCUMIOTIME
Type Real

Units See below

Range o to about 4.31 E68

Default 0

Read Time Anytime

Write Time Never

Inheritance None

Overwrite Rules None (read-only)

Host Services Supported

Attribute Number 14

Synonym PROCESSIOTI M E

Restrictions None

Explanation

The ACCUMIOTIME task attribute records the accumulated I/O time for the process.

The process is discontinued if the value of the ACCUMIOTIME task attribute reaches
the same value as the MAXIOTIME task attribute. Refer to the MAXIOTIME
description later in this section for details.

Units

When accessed from WFL, the ACCUMIOTIME value is expressed in units of seconds.
When accessed from other languages, the value is expressed in units of 2.4 microseconds.

86000502-000 2-19

ACCUMPROCTIME

ACCUMPROCTIME

2-20

Type Real

Units See below

Range o to about 4.31E68

Default 0

Read Time Anytime

Write Time Never

Inheritance None

Overwrite Rules None (read-only)

Host Services Supported

Attribute Number . 13

Synonym PROCESSTIME

Restrictions None

Explanation

The ACCUMPROCTIME task attribute records the accumulated processor time for the
task.

The process is discontinued if the value of the ACCUMPROCTIME task attribute
reaches the same value as the MAXPROCTIME task attribute. Refer to the
MAXPROCTIME description later in this section for details.

Units

When accessed from WFL, the ACCUMPROCTIME value is expressed in units of
seconds. When accessed from other languages, the value is expressed in units of 2.4
microseconds.

86000502-000

APPLYLIST

APPLVLIST
Type Boolean

Units Not applicable

Range TRUE, FALSE

Default None

Read Time Anytime

Write Time Before initiation

Inheritance None

Overwrite Rules None

Host'Services Not supported

Attribute Number 116

Synonym None

Restrictions None

Explanation

The APPL YLIST task attribute, if set, causes the system to apply task equations that
were previously placed in the MYPPB task attribute of the process for temporary
storage.

The MYPPB value can store task equations intended to be applied to a process, or task
equations intended to be applied to an object code file. Setting APPLYLIST to TRUE
causes the system.to apply only those equations in MYPPB that are intended for a
process. For fUrther information, refer to the discussion of the MYPPB task attribute
later in this section.

Run-Time Errors

MYPPB IS EMPTY, NOTHING TO APPLY

An attempt was made to set the APPL YLIST attribute to TRUE while there were no
attribute assignments stored in the MYPPB task attribute. The assignment is ignored,
but the assigning process continues executing normally.

CANNOT APPLY: PPB IS FOR CODEFILE

This warning occurs if the APPL YLIST attribute is set to TRUE when the MYPPB task
attribute of the compiler process stores only attributes intended for the resulting object
code file. The assignment is ignored, but the assigning process continues executing
normally.

8600 0502-000 2-21

AUTORESTORE

AUTORESTORE

2-22

Type Boolean

Units Not applicable

Range TRUE, FALSE

Default See below

Read Time Anytime

Write Time Anytime

Inheritance From parent

Overwrite Rules Standard

Host Services Not supported

Attribute Number 123

Synonym None

Restrictions None

Explanation

The AUTORESTORE task attribute specifies how the system should respond if the
process attempts to open a disk file that is not present on the requested family.

If AUTORESTORE is TRUE when a process encounters a NO FILE condition
for a disk file, then the system might initiate an independent runner called
ARCHIVE/AUTORESTORE to copy the missing file from backup tape to disk. The
system starts ARCHIVE/ AUTO RESTORE if all of the following conditions are true:

• The AUTQRESTORE system option has a value of either YES or DONTCARE.
An operator can use the AUTO RESTORE (Archiving Autorestore Option) system
command to assign this option.

• The reference to the file would normally produce a "NO FILE" RSVP message if the
file is not resident. Thus, for example, interrogating the RESIDENT file attribute
does not cause an automatic restore to take place.

• The archive directory references a backup tape that contains a backup copy of the
requested file. The archive directory records the location of files backed up through
the WFLARCHNE command.

• The FILENAME file attribute of the requested file specifies the same usercode as
the USERCODE attribute of the requesting process.

• If the file is a cataloged fi1e, then the generation of the file being requested matches
the file listed in the archive directory.

• The process is not attempting to open a logical file that has the file attribute
DUPLICATED = TRUE.

If the system does initiate an ARCHIVE/AUTORESTORE, the process requesting the
file remains in an active state. On the other hand, ARCHIVE/AUTO RESTORE becomes
suspended and appears in the W (Waiting Mix Entries) system command display. The

86000502-000

AUTORESTORE (cont.)

RSVP message identifies the backup tape that the operator should mount. When the
operator mounts the requested tape, ARCHIVE/AUTORESTORE copies the missing file
back to disk. The process that originally tried to use the file then resumes execution.

If the AUTORESTORE task attribute is FALSE, or if any of the other
conditions previously discussed are not true, then the system does not initiate
ARCHIVE/AUTORESTORE. Instead, the system suspends the process and displays
a "NO FILE < file name> " or a "NO FILE < file name> FIND ON < backup
description> " RSVP message.

For an overview of the system archiving and AUTORESTORE features, refer to the
A Series System Administration Guide.

Default

If the AUTO RESTORE system option is set to NEVER or DONTCARE, then the default
value of the AUTO RESTORE task attribute is FALSE. If the AUTO RESTORE system
option is set to YES, then the default value of the AUTO RESTORE task attribute is
TRUE.

If the value of the AUTO RESTORE system option is changed while the process is
running, the change has no effect on the value of the task attribute AUTO RESTORE.

86000502-000 2-23

AUTOSWITCHTOMARC .

AUTOSWITCHTOMARC

2-24

Type Boolean

Units Not applicable

Range TRUE, FALSE

Default FALSE

Read Time Anytime

Write Time Anytime

Inheritance None

Overwrite Rules Object code file dominant

Host Services Not supported

Attribute Number 102

Synonym None

Restrictions None

Explanation

The AUTOSWITCHTOMARC task attribute affects only processes that are initiated by
a MARC session and open a remote file. For these processes, AUTOSWITCHTOMARC
specifies whether the originating screen is automatically displayed when the process
terminates.

If AUTOSWITCHTOMARC is TRUE, the originating screen is displayed immediately
upon termination of the process. If AUTOSWITCHTOMARC is FALSE, the remote file
screen continues to be displayed after process termination, until the user presses the
XMIT or SPCFY key.

If this task attribute is assigned more than once, only the last assignment before process
termination has effect.

For more information about MARC tasking and remote files, refer to the discussion
of tasking from interactive sources in the A Series Task Management Programming
Guide.

86000502-000

BACKUPFAMILY

BACKUPFAMILY
Type String

Units Not applicable

Range See below

Default See below

Read Time Anytime

Write Time See below

Inheritance See below

Overwrite Rules Object code file dominant

Host Services Not supported

Attribute Number 63

Synonym None

Restrictions None

Explanation

The BACKUPF AMILY task attribute specifies the family where print and punch backup
files created by the process are located.

The BACKUPF AMILY task attribute affects only backup files with a BACKUP KIND file
attribute value that is equated to DLBACKUP by the SB (Substitute Backup) system
command. For an illustration of this restriction, refer to the examples at the end of this
subsection.

If the BACKUPF AMILY value of an in-use process is changed, the change affects only
backup files created after the change is made.

The effect of the BACKUPF AMILY task attribute can be overridden for individual
backup files by the F AMIL YNAME print attribute. For an introduction to printing
issues, refer to the discussion of controlling process I/O usage in the A Series Task
Management Programming Guide.

Default

The BACKUPF AMILY value defaults to the current DL BACKUP family defined by the
DL (Disk Location) system command.

Write Time and Range

A WFL job can include a BACKUPF AMILY assignment in the job attribute list at the
start of the job, but nowhere else in the job. When BACKUPF AMILY is assigned in
WFL, the value must conform to the syntax for < simple name> as defined under
"Format of the Descriptions" in this section.

86000502-000 2-25

BACKUPFAMILY (cont.)

2-26

Aside from WFL jobs, only MCSs can make assignments to BACKUPF AMIL Y. When
BACKUPF AMILY is assigned by an MCS, the value must be in standard form. For an
explanation of standard form, refer to the description of the DISPLAYTOSTANDARD
function in the A Series DCALGOL Programming Reference Manual. The system
extracts the first identifier from the standard form value and uses this as the
BACKUP FAMILY.

Inheritance

A process inherits its parent's BACKUP FAMILY value if the parent has a non-null value
and the process is running on the same host as its parent.

A process initiated from a MARC session receives the BACKUPF AMILY value
associated with that session.

Examples

Suppose an operator has used the SB (Substitute Backup) system command to create
the following SB settings for the system:

SB
DISK = DLBACKUP
PACK = PACK
:rAPE = TAPE
PETAPE = PETAPE
TAPE9 = TAPE9
TAPE? = TAPE?

Suppose also that an operator has used the DL (Disk Location) system command to
create the following DL BACKUP setting for the system:

DISK LOCATION:
BACKUP ON DBFAM

The following WFL job' creates a backup file:

100 ?BEGIN JOB;
110 BACKUPFAMILY = SYSPK;
120 FILE F(KIND=PRINTER,BACKUPKIND=DISK);
130 OPEN (F) ; .
140 LOCK (F) ;
150 ?END JOB

Line 120 of the WFL job specifies a BACKUPKIND value of DISK; but the SB setting
equates DISK to DLBACKUP. The DL BACKUP setting in turn is DBF AM. Thus,
by default the printer backup file would have been created on DBF AM. However, the
BACKUPFAMILY statement at line 110 overrides the DLBACKUP family and causes
the backup file to be created on SYSPK instead. '

86000502-000

BACKUPFAMILY (cont.)

N ow suppose that line 120 of the WFL job is changed to specify a BACKUP KIND of
PACK for the backup file. The following is the modified WFL job:

100 ?BEGIN JOB;
110 BACKUPFAMILY = SYSPK;
120 FILE F(KIND=PRINTER,BACKUPKIND=PACK);
130 OPEN(F);
140 LOCK(F);
150 ?END JOB

This version of the job specifies a BACKUPKIND value of PACK. The SB setting
equates PACK to PACK, and the backup file is created on the family called PACK.
The system ignores the BACKUPF AMILY assignment in the WFL job because
BACKUPF AMIL Y affects only backup files that are redirected to the DL BACKUP
family by an SB substitution.

Run-Time Error

BACKUPFAMILY ATTRIBUTE MAY ONLY BE SET BY AN MCS OR TASKING PROGRAM

A process that was not an MCS· or tasking program attempted to assign a value to
BACKUPF AMIL Y. The assigning process, if nonprivileged, is discontinued with
mSTORYCAUSE = 2 (PROGRAMCAUSEV) and mSTORYREASON = 54
(ONLYMCSTASKINGV).

86000502-010 2-27

BDNAME

BDNAME

2-28

Range

< backup prefix>

Type

Units

Range

Default

Read Time

Write Time

Inheritance

OVerwrite Rules

Host Services

Attribute Number

Synonym

Restrictions

String

Not applicable

<backup prefix>

Null string

Anytime

Anytime

From parent

Standard

Supported

29

BACKUPPREFIX

None

r(/ ----,
---.,,-----------r-L..-/9\-<simple name>>-....I.-----------! t i --<usercode>-) J

Explanation

The BDNAME task attribute causes backup files declared by the process to be
permanently saved under the file name prefix specified by the BDNAME value and
prevents the backup files from being automatically queued for printing. The user can
print out the backup files later by using a WFL PRINT statement ..

If BDNAME is used by a nonprivileged process, backup files are saved under the
usercode of the process that declares the file. An error results if a nonprivileged process
attempts to assign a BDNAME value that includes a usercode different from the process
usercode, or an asterisk (*) in place of a usercode.

A privileged process can include a different usercode or an asterisk (*) at the start of the
BDNAME value and thus create backup files that do not have the same usercode as the
process.

The titles of the backup files follow the normal backup file titling conventions, except
that a usercode or asterisk (*) and the BDNAME value replaces the usual prefix of *BD
or *BP. For a discussion of backup file titling conventions, refer to the discussion of
controlling process I/O usage in the A Series Task Management Programming Guide.

File names can be a maximum of 12 nodes long, not counting the usercode. However,
the BDNAME value should not be that long because the system adds two or more nodes

86000502-010

BDNAME (cont.)

to the BDNAME value when constructing the file title. In most cases, the system adds
three nodes to the title.

If the BDNAME value is changed after initiation, only backup files opened after the
change are. affected.

Note that the BDNAME task attribute affects only backup files declared by the process.
Any backup files written to by the process, but declared by another process, are not
affected.

When originally implemented, the BDNAME task attribute had effect only if the
BDBASE option of the OPTION task attribute was set. This is no longer the case;
whether the BDBASE option is set or not set has no effect on the BDNAME task
attribute.

The BDNAME task attribute has no effect on the job summary. For information
about saving a copy of the job summary on disk, refer to the description of the
JOBSUMMARYTITLE task attribute in this section.

The effects of the BDNAME task attribute can also be achieved through the use of
several print attributes. For information about the interaction of BDNAME and these
print attributes, refer to the discussion of controlling process I/O usage in the A Series
Task Management Programming Guide.

Run-Time Errors

BDNAME ATTRIBUTE IS READONlY ON ACTIVE TASK

A process attempted to change the BDNAME value of another in-use process. The
assigning process, if nonprivileged, is discontinued with HISTORYCAUSE = 2'
(PROGRAMCAUSEV) and HISTORYREASON = 33 (READONLYONACTIVEV).

BDNAME ATTRIBUTE INCORRECT SYNTAX

BDNAME was assigned a value that does not conform to the backup prefix format. The
assigning process is discontinued with HISTORYCAUSE = 2 (PROGRAMCAUSEV)
and HISTORYREASON = 131 (INCORRECTSYNTAXV).

FILE <internal name> OPEN ERROR: TOO MANY NAMES

This error occurs when the backup file is opened if the BDNAME value caused
the backup file title to have more than the allowed number of nodes. The
process is discontinued with HISTORYCAUSE = 8 (SOFTIOERRCAUSEV) and
HISTORYREASON = 18 (GTR14ERR).

86000502-000 2-29

BRCLASS

BRCLASS

2-30

Type Mnemonic

Units Not applicable

Range See "Explanation" below

Default NOBR

Read Time Anytime

Write Time Anytime

Inheritance From parent

Overwrite Rules Object code file dominant

Host Services Not supported

Attribute Number 83

Synonym None

Restrictions None

Explanation

The BRCLASS task attribute controls how the process responds to a BR (Breakout)
system command. The operator can use the BR command to initiate a checkpoint for
an in-use process. For a general discussion of checkpointing, refer to the discussion of
restarting jobs and tasks in theA Series Task Management Programming Guide.

This attribute is meaningful only if the CHECKPOINTABLE attribute is TRUE. Refer
to the CHECKPOINTABLE description in this section for details.

The following are the possible values and their meanings:

Mnemonic
Value

NOBR

ONCEONLY

MULTIPLE

Integer Value

o

1

2

Meaning

The operator is not allowed to initiate a checkpoint
for this process.

The operator can initiate a checkpoint for this
process. The process is not allowed to continue
after the checkpoint. The recovery files created by
an operator BR (Breakpoint) system command are
removed as soon as the RERUN statement has
completed. This restriction prevents a process
from being restarted more than once from this
checkpoint.

The operator can initiate a checkpoint for this
process. The process is allowed to continue
execution after the checkpoint.

Note: The MULTIPLE value has effect
only if it is set for the parent WFL
job as well as for the checkpointed
process.

86000502-000

BRCLASS (cont.)

The BRCLASS attribute is reset to NOBR when the process terminates.

Example

In the following WFL job, the job attribute list assigns the job a BRCLASS value of
MULTIPLE. This value is inherited by OBJECTJPROGDATA, which becomes eligible
for multiple operator checkpoints.

?BEGIN JOB;
BRCLASS = MULTIPLE;

RUN OBJECT/PROGDATA;
?END JOB

Run-Time Error

BRCLASS ATTRIBUTE INCORRECT SYNTAX

An attempt was made to assign BRCLASS either an invalid mnemonic or a value
less than 0 or greater than 2. The assigning process, if nonprivileged, is discontinued
with HISTORYCAUSE = 2 (PROGRAMCAUSEV) and HISTORYREASON = 131
(INCORRECTSYNT AXV).

86000502-000 2-31

CHARGE

CHARGE
Type String

Units Not applicable

Range <charge code>

Default Null string

Read Time Anytime

Write Time Before initiation

Inheritance See below

Overwrite Rules Standard

Host Services Supported

Attribute Number 42

Synonym CHARGECODE

Restrictions None

Range

<charge code>

rt- /
--1...-/14\-<5 impl e name>>--'-------------------;

Explanation

The CHARGE task attribute contains the charge code of the process. The system logs
the charge code information for each process. This information can be used by a log
analysis program that computes billing charges at a site. For further information about
billing, refer to the A Series System Administration Guide.

When a process is initiated, the system examines the USERCODE task attribute of the
process and examines the usercode definition in the USERDAT AFILE to determine
whether the CHARGEREQ usercode attribute is set. Ifnot, any CHARGE task
attribute is accepted. If CHARGEREQ is set, the system performs the following steps
to determine whether the CHARGE task attribute value is legal for the process.
Remember when reading these steps that the system applies any inherited value to the
process before making the following checks:

• If the CHARGE value of the process is null, the system discontinues the process.

• If the CHARGE value of the process is not null, the system compares the value with
the CHARGE CODE usercode attribute. If the CHARGE value does not correspond
to any of the values stored in the CHARGECODE usercode attribute, the system
discontinues the process.

2-32 86000502-000

CHARGE (cont.)

• For a WFLjob, the WFL compiler checks the usercode of the job to see if the
CHARGEREQ usercode attribute is set. If it is, the WFL compiler gives a syntax
error if the CHARGE value of the job is null. The WFL compiler also gives a
syntax error if the CHARGE value of the job is not null and does not correspond
to any of the values in the CHARGE CODE usercode attribute. (A WFL job can
receive a CHARGE value at compile time either through inheritance or through an
assignment in the job attribute list.)

If it is necessary to change the USERCODE value of an in-use process to a different
usercode that requires a different charge code, the USERCODE assignment should be
made first and the CHARGE assignment second. Refer to the USERCODE description
later in this section for details.

Inheritance

A process inherits the CHARGE value of its parent.

The system administrator can assign one or more charge codes to the
CHARGE CODE attribute of a usercode. If the system administrator also sets the
USEDEFAULTCHARGE attribute of the usercode, then MARC or CANDE sessions
receive the first charge code from the CHARGE CODE usercode attribute at log-on time.
Otherwise, MARC or CANDE requests the user to enter a charge code. Processes
initiated from a MARC or CANDE session inherit the CHARGE value of the session.

A WFL job inherits a charge code from the usercode definition if all the following
conditions are true:

• The job attribute list includes a USERCODE assignment or has inherited the
usercode of the initiating source (such as an ODT that has a terminal usercode).

• The job attribute list did not include a CHARGE assignment and the job was
submitted from a source that had no CHARGE value associated with it. (An ODT is
an example of such a source.)

• The system administrator has assigned CHARGE CODE and USEDEFAULT
CHARGE attributes to the usercode.

Run-Time Errors

CHARGECODE ATTRIBUTE INCORRECT SYNTAX

An attempt was made to assign CHARGE a value that was not in simple name format.
If the assigning process is nonprivileged, it is discontinued with mSTORYCAUSE = 2
(PROGRAMCAUSEV) and HISTORYREASON = 131 (lNCORRECTSYNTAXV).

CHARGECODE READONLY ON ACTIVE TASK, NOT CHANGED

An attempt was made to change the CHARGE value after initiation. This is a warning
message rather than an error message. The process continues normally, but the
requested change is not made.

86000502-000 2-33

CHARGE (cont.)

2-34

INVALID CHARGECODE

The charge code assigned at initiation does not exist or is not allowed for this usercode.
The new process (not the assigning process) is discontinued with HISTORYCAUSE = 2
(PROGRAMCADSEV) and HISTORYREASON = 14 (INV ALIDACCESSCODEV).

86000502-000

CHECKPOINTABLE

CHECKPOINTABLE
Type Boolean

Units Not applicable

Range TRUE, FALSE

Default FALSE

Read Time Anytime

Write Time Never

Inheritance None

Overwrite Rules None (read-only)

Host Services Not su pported

Attribute Number 82

Synonym None

Restrictions None

Explanation

The CHECKPOINTABLE task attribute specifies whether a checkpoint can be initiated
for this process.

A value of TRUE indicates that a checkpoint can be initiated for this process. This value
does not guarantee that the checkpoint will be executed successfully. The checkpoint can
fail because of factors that are not reflected by the CHECKPOINTABLE value.

A value of FALSE indicates that the task is not allowed to execute a checkpoint.

The value of this attribute is computed at the time it is accessed.

The system evaluates the following conditions once. If any are true, the system sets the
CHECKPOINT ABLE attribute to FALSE for the life of the process:

• The process is an MCS or a process initiated by an MCS. This category includes
processes initiated from sessions.

• The process is a frozen library. (For information about libraries, refer to the A Series
Task Management Programming Guide.)

• The process was not initiated by a RUN statement in a WFL job.

• The code was not compiled by one of the following compilers:

ALGOL, DCALGOL, DMALGOL, or BDMSALGOL

COBOL(68), COBOL74, or BDMSCOBOL

In addition, at every access of the attribute the system checks to see whether the
. process has any offspring. If so, CHECKPOINTABLE returns a value of FALSE.

86000502-000 2-35

CHECKPOINTABLE (cont.)

2-36

Another task attribute related to checkpointing, called BRCLASS, is discussed elsewhere
in this section. For more information about checkpointing, refer to the discussion of
restarting jobs and tasks in the A Series Task Management Programming Guide.

86000502-000

CLASS

CLASS

Type Integer

Units Not applicable

Range o through 1023

Default See below

Read Time Anytime

Write Time See below

Overwrite Rules See below

Inheritance See below

Host Services Supported

Attribute Number 34

Synonym QUEUE

Restrictions None

Explanation

For WFL jobs or descendants ofWFL jobs, the CLASS task attribute specifies the
number of the job queue from which the WFL job is initiated. For processes not
descended from WFL jobs, CLASS stores a value of ·zero.

The CLASS task attribute is only one of many factors affecting the job queue chosen
for a WFL job. The system compares any user-specified CLASS value with the job
queue definitions and terminates the WFL job if the specified CLASS is not appropriate.
The system also terminates the WFL job if its CLASS value is not allowed by the
CLASSLIST and ANYOTHERCLASSOK attributes of the WFL job's usercode.

If a CLASS value is not explicitly assigned, the system selects a queue for the WFL
job. The job queue selection depends on such factors as the system default queue
specification, the usercode definition, and any resource limits set for the job queue.

For a detailed explanation of job queues, refer to the A Series System Administration
Guide.

Write Time

The CLASS task attribute can be assigned only in WFL jobs. Within a WFL job, CLASS
can be assigned only in the job attribute list.

Overwrite Rules

This attribute can be assigned only in the job attribute list ofa WFLjob. For
information about job attribute lists, refer to the A Series Work Flow Language (WF'L)
Programming Reference Manual.

8600 0502-000 2-37

CLASS (cont.)

2-38

Inheritance

A WFL job inherits a CLASS value from the usercode definition if all the following
conditions are true:

• The job attribute list includes a USERCaDE assignment or the job has inherited the
use~code of the initiating source (such as an aDT that has a terminal usercode).

• The job attribute list did not include a CLASS assignment, and the job was
submitted from a source that had no CLASS value associated with it. (An aDT is an
example of such a source.)

• The system administrator has assigned a CLASS value to the usercode.

Descendants of WFL jobs inherit the CLASS value of the job. However, because only
WFL jobs go through the job queue mechanism, the CLASS value has no effect on the
descendants.

Example

The following is an example of a CLASS assignment in the job attribute list of a WFL
job:

?BEGIN JOB;
CLASS =, 2;

RUN OBJECT/X;

?END JOB

86000502-000

CODEVISIBILITY

CODEVISIBILITY

Note: The CODEVISIBILITY task attribute has no meaning on systems
running the Mark 3.9 system software release or a later release.
The system displays a deimplementation warning message when a
process attempts to use this attribute.

86000502-000 2-39

CONVENTION

CONVENTION

2-40

Type String

Units Not applicable

Range <convention identifier>

Default See below

Read Time Anytime

Write Time Anytime

·1 nheritance See below

Overwrite Rules Standard

Host Services Supported

Attribute Number 120

Synonym None

Restrictions None

Range

<convention identifier>

-<uppercase letter>

Lt/16\-,-<u~p~rcase letter~
L<d191 t>·------'

Explanation

The CONVENTION task attribute specifies the date, time, and currency conventions
used by a process.

This task attribute affects only processes that use the CENTRALSUPPORT library to
handle conventions for localization. When a process invokes a conventions procedure in
the CENTRALSUPPORT library, the process can optionally use parameters to specify
the convention that is desired. If the process does not request a convention in the
procedure parameters, the CONVENTION task attribute of the user process determines
the convention that is used.

Changes made to the value of this attribute take effect immediately. That is, subsequent
calls to the conventions procedures in CENTRALSUPPORT use the new value of
CONVENTION.

For further information about the CENTRALSUPPORT library, refer to the A Series
MultiLingual System (MLS) Administration, Operations, and Programming Guide.

Default and Inheritance

A process inherits the CONVENTION value of its parent.

8600 0502-000

CONVENTION (cont.)

The default convention for A Series systems is ASERIESNATIVE. If you purchase your
system through a Unisys international subsidiary, they may have already altered the
CENTRALSUPPORT library to provide a different default convention. The system·
administrator can establish a different default convention value for the whole system by
using the SYSOPS (System Options) system command.

The system administrator can selectively override the system default convention by
including a CONVENTION attribute in usercode definitions in the USERDATAFILE.
This CONVENTION value does not directly affect processes, but it is inherited by
MARC and CANDE sessions with that usercode. The user can also use the MARC or
CANDE CONVENTION command to change the convention of a session. Processes
initiated from the session inherit the current convention of the session.

The CONVENTION attribute of a usercode also is inherited by WFL jobs that are
assigned that usercode in the job attribute list.

Example

Processes that differ only in the conventions they use can benefit from this task
attribute.

For example, a company might have a program that needs to print invoices for customers
in several different countries. The invoices have to be printed using the conventions of
each country. The following ALGOL statements run the program three times, assigning
a different CONVENTION value to each run:

REPLACE T1.CONVENTION BY "UNITEDKINGDOMl. ";
CALL DONOTHING [T1];
REPLACE T2.CONVENTION BY "FRANCELISTING.";
CALL DONOTHING [T2];
REPLACE T3.CONVENTION BY "EUROPEANSTANDARD. II

;

CALL DONOTHING [T3];

Each of these processes calls the appropriate CENTRALSUPPORT library procedures to
format date, time, and currency information while generating invoices appropriate for
each country.

86000502-000 2-41

CORE

CORE

2-42

Type Integer

Units Words

Range o to 1048575

Default See below

Read Time Anytime (except inWFL)

Write Time See below

Inheritance None

Overwrite Rules Standard

Host Services Not supported

Attribute Number 2

Synonym COREESTIMATE

Restrictions See below

Explanation

The CORE task attribute provides an estimate of the amount of main memory that
a process needs for code and data areas in order to execute efficiently. The system
schedules a new process if the CORE value exceeds the amount of available memory.
You can override the default core estimate by assigning a different value to this task
attribute.

For more information, refer to the discussion of controlling process memory usage in the
A Series Task Management Programming Guide.

Default

The default value of CORE is taken from compiler and operating system core estimates
that are stored in the object code file. For information about these estimates,
refer to the discussion of process memory usage in the A Series Task Management
Programming Guide.

Write Time

The CORE task attribute can be written at any time. However, the CORE value is used
only at initiation time. Assignments made to CORE after initiation have no effect on the
process.

Restrictions

In WFL, CORE can be assigned separate data core and code core values or a single total
core value. Other sources can assign CORE only a single value, which is a data core
estimate.

The CORE task attribute cannot be read in WFL.

86000502-000

CORE (cont.)

Examples

The following WFL statement initiates the program OBJECT/PROG and assigns CORE
a data estimate of 3000 and a code estimate of 1300:

RUN OBJECT/PROG;
CORE = (3000.1300);

The following WFL statement initiates the program OBJECT/PROG and assigns CORE
a total memory estimate of 4300:

RUN OBJECT/PROG;
CORE = 4300;

Run-Time Error

CORE ATTRIBUTE INCORRECT SYNTAX

An attempt was made to assign CORE a value outside the allowed range. The
assigning process, if nonprivileged, is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) and HISTORYREASON = 131 (INCORRECTSYNTAXV).

86000502-000 2-43

DATABASE

DATABASE

2-44

Type String

Units Not applicable

Range < data base eq uation >

Default Null string

Read Time Never

Write Time Before initiation

Inheritance From parent

Overwrite Rules Standard

Host Services Not supported

Attribute Number 73

Synonym None

Restrictions Available only in WFL

Range

< database equation>

-<simple name>- (- TITLE - = -<title>-) ---------/

Explanation

The DATABASE task attribute causes a process to use a different database than it
otherwise would. This task attribute can be accessed only in WFL jobs.

In the DATABASE value, the simple name is the internal name by which the process
refers to the original database. The title is the title of the database that is to be used
instead.

Example

The following example shows this attribute being used in a WFL job:

RUN USERPROG;
DATABASE TESTDB(TITLE=REPORT/MANAGER);

Run-Time Errors

DATABASE ATIRIBUTE - RESTRICTED ACCESS

An attempt was made to assign a value to the DATABASE attribute of an in-use process.
The assigning process, ifnonprivileged, is discontinued with HISTORYCAUSE = 2
(PROGMMCAUSEV) and mSTORYREASON = 128 (RESTRICTEDACCESSV).

86000502-000

DATABASE (cont.)

DATABASE ATTRIBUTE IS WRITEONLY

An attempt was made to read the DATABASE attribute of a process. The
inquiring process, if nonprivileged, is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) and HISTORYREASON = 129 (ATTWRITEONLYV).

86000502-000 2-45

DECKGROUPNO

DECKGROUPNO
Type Integer

Units Not applicable

Range o to 549755813887

Default 0

Read Time Anytime; accurate while in use

Write Time Never

Overwrite Rules None (read-only)

Inheritance None

Host Services Not supported

Attribute Number 33

Synonym None

Restrictions None

Explanation

The DECKGROUPNO task attribute stores an index that is assigned by WFL to each
task initiated by a WFL job. The first task initiated is assigned a DECKGROUPNO
of 1, the second task a DECKGROUPNO of 2, and so on. WFL uses this information
internally to determine which local data specifications are associated with which tasks.

A process initiated from any source but WFL has a DECKGROUPNO of O.

For information about local data specifications, refer to the A Series Work Flow
Language (WFL) Programming Reference Manual.

Example

The following WFL example includes a number of statements that display the value of
DECKGROUPNO at different points during job execution. The comments at the right of
the example show the values displayed by these statements.

?BEGIN JOB WFL/TEST;
TASK TI, T2, T3;
DISPLAY STRING(TI(DECKGROUPNO),*); % Displays 0
PROCESS RUN OBJECT/ALGOL/ERROR [Tl];

DISPLAY STRING(TI(DECKGROUPNO),*); % Displays I
PROCESS RUN OBJECT/ALGOL/ERROR [T2];

DISPLAY STRING(T2(DECKGROUPNO),*); % Displays 2
PROCESS RUN OBJECT/ALGOL/ERROR [T3];

DISPLAY STRING(T3(DECKGROUPNO),*); % Displays 3
?END JOB

2-46 86000502-000

DEPTASKACCOUNTING

DEPTASKACCOUNTING
Type Mnemonic

Units Not applicable

Range See IIExplanation" below

Default See below

Read Time Anytime

Write Time' Before initiation

Inheritance See below

Overwrite Rules Standard

Host Services Not su pported

Attribute Number 124

Synonym None

Restrictions None

Explanation

The DEPTASKACCOUNTING task attribute specifies whether the system should
generate log entries and system messages when the process is initiated and when the
process terminates. You can use DEPTASKACCOUNTING to improve overall system
performance by reducing the number of log entries the system generates. The be.st way
to achieve this effect is by establishing a system-wide DEPTASKACCOUNTING default,
as described later under "Default and Inheritance. "

The DEPTASKACCOUNTING task attribute can be assigned to any process. However,
the system enforces the value of this task attribute only for processes that meet all the
following criteria:

• The process is a task (that is, a dependent process).

• The process has the same usercode as its parent.

• The process is not initiated directly from a CANDE or MARC session or from a WFL
job. .

86000502-000 2-47

DEPTASKACCOUNTING (cont.)

2-48

The following are the possible values ofDEPTASKACCOUNTING:

Mnemonic
Value

UNSPECIFIED

ANONYMOUS

IDENTIFIED

,Integer Value

o

1

2

Default and Inheritance

Meaning

This value has no effect on logging or message
displays.

The system does not generate Major Type 1, Minor
Type 2 (BOT Entry) or Major Type 1, Minor Type 4
(EOT Entry) log entries for this process. If the
system generates any other log entries for this
process, the system places a Major Type 0, Minor
Type 1 (Establish Identity) log entry before the first
of these other entries. These logging effects apply
equally to the system log and the job log.

When the process terminates, the resource usage'
statistics of the process are added to those of the
parent and are reflected in the Major Type 1, Minor
Type 2 (EOJ Entry) or Minor Type 4 (EOT Entry) log
entry that the system issues for the parent. For
details about which fields in the parent's log entry
can reflect statistics from an ANONYMOUS
offspring, refer to theA Series System
Software Support Reference Manual.

Further, no BOT or EOT messages are sent to the
originating station, and the process does not
appear in the C (Completed Mix Entries) system
command display.

This value also affects enforcement of the
FILEACCOUNTING task attribute. Refer to the
FILEACCOUNTING task attribute description in
this section.

The system generates BOT and EOT log entries for
the process. The system sends BOT and EOT
messages to the originating terminal, and the
process termination is recorded in the C
(Completed Mix Entries) display.

Note that an operator can use the LOGGING
(Logging Options) system command to prevent
logging of any BOT and EOT log entries. In this
case, even processes with DEPTASKACCOUNTING
= IDENTIFIED do not receive BOT or EOT log
entries.

A process inherits the DEPTASKACCOUNTING value of its parent.

The system administrator can use the ACCOUNTING (Resource Accounting) system
command to specify a system-wide default for DEPTASKACCOUNTING. The
system administrator can also associate a default value with a usercode by including
a DEPTASKACCOUNTING usercode attribute in the usercode definition in the
USERDATAFILE.

86000502-000

DEPTASKACCOUNTING (cont.)

When a process is initiated, the system assigns the DEPTASKACCOUNTING
task attribute the maximum of its current value (whether assigned or inherited),
the system default value, and the usercode value. The integer values for each
DEPTASKACCOUNTING mnemonic were previously listed under the "Explanation"
subheading.

For example, suppose that DEPTASKACCOUNTING has a value of ANONYMOUS
in the task variable, a value of IDENTIFIED at the system level, and a value of
UNSPECIFIED at the usercode level. At initiation time, the process is assigned a
DEPT ASKACCOUNTING value of IDENTIFIED by the system, because IDENTIFIED
has a higher numeric value (2) than ANONYMOUS or UNSPECIFIED.

On a system running InfoGuard software with a security class of S2, the system sets
DEPTASKACCOUNTING to IDENTIFIED for all processes when they are initiated.
This rule overrides all of the other factors affecting the DEPTASKACCOUNTING value.

86000502-000 2-49

DESTNAME

DESTNAME

2-50

Type String

Units Not applicable

Range <name>

Default SITE

Read Time Anytime

Write Time Before initiation

Inheritance See below

OVerwrite Rules Standard

Host Services Supported

Attribute Number 44

Synonym BACKUPDESTINATION

Restrictions None

Explanation

The DESTNAME task attribute specifies a destination station for printer or punch
output created by the process. This attribute is useful at sites where some of the
printers are connected to data cornm lines.

This attribute can be set to any of the following values:

• Any station name in the DATACOMINFO file data cornm definition for the system.

• SITE. This value specifies that there is no destination station for the process. Other
factors, such as the default printer pool definition, determine the routing of printer
and punch files.

Setting this attribute to something other than SITE causes printer files to be built
under the directory * REMLPnn/ = , and punch files to be created under the directory
*REMCPnn/ =. The nn in the titles is the MCS number defined by the data comm
subsystem for the MCS that controls the destination station. The remainder of the file
name includes the job number, mix number, and so on, as described in the process I/O
usage discussion in the A Series Task Management Programming Guide.

If COMS controls the destination station, and ReprintS is installed on the system,
then the files are printed by the Print System. If remote job entry (RJE) controls the
destination station, then RJE prints the files automatically. Otherwise, the files remain
on disk until removed or printed by application software supplied by the site.

An alternate method of specifying the destination station for a process is the
DESTSTATION task attribute. DESTSTATION specifies the logical station number
(LSN) of the destination station. Assigning a valid station name to DESTNAME causes
DESTSTATION to receive the corresponding LSN. Similarly, assigning a valid LSN
to DESTSTATION causes DESTNAME to be updated with the corresponding station
name.

86000502-000

DESTNAME (cont.)

Yet another method of routing printer output is the use of the DESTINATION file
attribute. You can assign this file attribute to a particular printer file, or you can assign
a default DESTINATION value to the PRINTDEFAULTS task attribute. If the
DESTINATION value conflicts with the DESTNAME value, DESTINATION takes
precedence. Note that DESTINATION does not change the value of DESTNAME; it
simply prevents the DESTNAME value from being used.

For information about remote printing, refer to the A Series Print System
(PrintS/ReprintS) Administration, Operations, and Programming Guide.

Inheritance

A process inherits the DESTNAME value of its parent.

A process initiated from a MARC or CANDE session inherits the DESTNAME value of
the session. If the CANDEDESTNAME usercode attribute is set for a usercode, then
MARC and CANDE use this value as the DESTNAME for sessions with that usercode.
(For information about setting CANDEDESTNAME, refer to the A Series Security
Administration Guide.) The DESTNAME value for the current session can be changed
using the MARC or CANDE DESTNAME command.

Run-Time Errors

BACKUPDESTI NATION ATTRI BUTE I NCORRECT SYNTAX

An attempt was made to assign DESTNAME a value that was not in title format. (Note
that BACKUPDESTINATION is a synonym for DESTNAME.) The current values of
DESTNAME and DESTSTATION remain unchanged. The assigning process, unless
privileged, is discontinued with HISTORYCAUSE = 2 (PROGRAMCAUSEV) and
HISTORYREASON = 131 (lNCORRECTSYNTAXV).

DESTNAME ATTRIBUTE IS READ ONLY ON ACTIVE TASK

An attempt was made to assign DESTNAME for an in-use process. The assigning
process, if it is nonprivileged, is discontinued with mSTORYCAUSE = 2
(PROGRAMCAUSEV) andIDSTORYREASON = 33 (READONLYONACTIVEV).

INVALID DESTINATION

The process was initiated with a DESTNAME value that does not correspond to any
existing station or pseudostation. Note that no error is given for assigning such a
DESTNAME value to a task variable. When the assignment is first made, DESTNAME
is changed to the requested value and DESTSTATION is changed to zero. When
the task variable is later used to initiate a process, the new process suffers the error.
The process is discontinued with HISTORYCAUSE = 2 (PROGRAMCAUSEV) and
HISTORYREASON = 46 (BADTASKATTRIBUTEV). The INVALID DESTINATION
error message can also be displayed for a bad DESTSTATION task attribute
assignment; refer to the description ofDESTSTATION in this section.

8600 0502-000 2-51

DESTNAME (cont.)

2-52

UNABLE TO OBTAIN STATION NAME

An attempt was made to read DESTNAME when DESTNAME was set to the name of a
nonexistent station. This error is not fatal.

86000502-000

DESTSTATION

DESTSTATION
Type Integer

Units Not applicable

Range Valid LSNs

Default 0

Read Time Anytime

Write Time Before initiation

Inheritance See below

Overwrite Rules Standard

Host Services Supported

Attribute Number 46

Synonym None

Restrictions None

Explanation

The DESTSTATION task attribute specifies a destination station for printer or punch
output created by the process. This attribute is useful at sites where some of the
printers are connected to data comm lines.

DESTSTATION serves the same purpose as the DESTNAME task attribute. The
difference is that DESTSTATION specifies the logical station number (LSN) of
the destination station rather than the station nan;le. Assigning a valid LSN to
DESTSTATION causes DESTNAME to be updated with the corresponding station
name. Similarly, assigning a valid station name to DESTN AME causes DESTSTATION
to receive the corre$ponding LSN.

DESTSTATION can be set to the LSN of any station on the system or to O. If
DESTSTATION is 0, there is no destination station for the process. In that case, other
factors, such as the default printer pool definition, determine the routing of printer and
punch files.

Inheritance

A process inherits its parent's DESTSTATION value. A process initiated from a MARC
or CANDE session inherits the DESTNAME value of the session, and this DESTNAME,
in turn, determines the DESTSTATIQN value.

Run-Time Errors

DATACOMM MUST BE ACTIVE TO SET DESTSTATION

An attempt was made to set DESTSTATION to a nonzero value while the number of
data comm users was zero. The assigning process, if nonprivileged, is discontinued

86000502-000 2-53

DESTSTATION (cont.)

2-54

with HISTORYCAUSE = 2 (PROGRAMCAUSEV) and HISTORYREASON = 134
(DATACOMMNOTACTIVEV).

DESTSTATION ATTRIBUTE IS READ ONLY ON ACTIVE TASK

An attempt was made to assign DESTSTATION for an in-use process. The
assigning process, if nonprivileged, is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) andHISTORYREASON = 33 (READONLYONACTIVEV).

INVALID DESTINATION

An attempt was made to set DESTSTATION to a value that is not a valid LSN. The
DESTSTATION value is set to zero, and the DESTNAME value remains unchanged.
The assigning process, if nonprivileged, is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) and HISTORYREASON = 133 (INV ALIDLSNV). The INVALID
DESTINATION error message can also result indirectly from a bad DESTNAME task
attribute assignment; refer to the description of DESTN AME in this section.

86000502-000

OISKLIMIT

DISKLIMIT
Type Integer

Units Disk segments

Range o to 549755813887

Default o (unlimited)

Read Time Anytime

Write Time Anytime

Inheritance See below

Overwrite Rules See below

Host Services Not supported

Attribute Number 59

Synonym None

Restrictions None

Explanation

Note: The DISKLIMIT task attribute is being replaced by the disk resource
control system, and is being deimplemented in a future release. For a
description of the disk resource control system, refer to the A Series
Disk Subsystem Administration and Operations Guide. Also refer to
the descriptions of the TEMPFILELIMIT and TEMPFILEMBYTES
task attributes in this section.

The DISKLIMIT task attribute limits the number of disk segments the process can
request. The process is discontinued if it requests more disk segments than are allowed
by the DISKLIMIT.

Disk segment requests occur when a process creates a new disk file, or increases the
size of an existing disk file to the point where a new area must be allocated for the
file. (Note, however, that simply opening an existing disk file does not result in a disk
segment request.) All types of disk segment requests, with the exception of overlay
storage and printer backup files, are charged to the requesting process.

When a task terminates, the number of disk segments requested by the task are
subtracted from the job's DISKLIMIT value.

If DISKLIMIT has not been set, there is no limit on disk usage. In this case, reading
DISKLIMIT returns a value of O. However, explicitly assigning 0 to DISKLIMIT sets a
limit of 0 on disk segment usage.

Inherit~nce

A process inherits the current DISKLIMIT value of its parent.

If ajob queue has a default value for the DISKLIMIT queue attribute, that value is
inherited by the DISKLIMIT task attribute ofWFLjobs run from that queue.

86000502-000 2-55

DISKLIMIT (cont.)

2-56

If a job queue has a limit value for the DISKLIMITqueue attribute, then WFL jobs that
specify a greater DISKLIMIT value in the job . attribute list are not allowed in that job
queue.

Overwrite Rules

Standard overwrite rules apply, with the following exceptions:

• When a task is initiated, the DISKLIMIT value is the minimum of the value
inherited from the parent and any value resulting from standard overwrite rules.

• For DISKLIMIT assignments to an in-use process, the maximum value that can
result is thejob's current DISKLIMIT value, minus the disk segments the in-use
process has already requested. Attempts to assign a higher value result in this
maximum value being assigned. No error or warning is issued.

Run-Time Error

DISK LIMIT EXCEEDED

The process attempted to request more disk segments than were allowed
by DISKLIMIT. The process is discontinued with HISTORYCAUSE = 3
(RESOURCECAUSEV) and HISTORYREASON = 11 (DISKLIMITEXCEEDEDV).

86000502-000

DISPLAYONLYTOMCS

DISPLAYONLYTOMCS
Type Boolean

Units Not applicable

Range TRUE, FALSE

Default FALSE

Read Time Anytime

Write Time See below

Inheritance None

Overwrite Rules Object code file dominant·

Host Services Not su pported

Attribute Number 103

Synonym None

Restrictions None

Explanation

The DISPLAYONL YTOMCS task attribute specifies whether any DISPLAY messages
created by the process are included in the system messages. The operator can use
the MSG (Display Messages) system command to list recent system messages.
IfDISPLAYONLYTOMCS is FALSE, then DISPLAY messages appear in the
MSG command output, as well as at the session that initiated the process. If
DISPLAYONLYTOMCS is TRUE, then DISPLAY messages appear only at the session
that initiated the process. A DISPLAYONL YTOMCS value of TRUE allows a process to
communicate with an end user without distracting the operator .

. The DISPLAYONLYTOMCS task attribute does not affect the logging of DISPLAY
messages in either the job log or the system log. DISPLAY messages will be included
in these logs unless the operator has used selective logging features to suppress the
logging of DISPLAY messages. (For a description of selective logging features, refer to
the A Series System Software Support Reference Manual.)

For information about DISPLAY messages, refer to the discussion of tasking from
interactive sources in the A Series Task Management Programming Guide.

The A Series systems also provide methods for suppressing other types of messages.
These methods include the SUPPRESSW ARNING task attribute (discussed later in this
section) and the MSC SUPPRESS form of the MSC command, which is discussed in the
A Series Menu-Assisted Resource Control (MARC) Operations Guide.

Write Time

This task attribute can be assigned at any time for a process that is descended from a
session. An example of such a process is one initiated by a CANDE RUN command.

86000502-000 2-57

DISPLAYONLYTOMCS (cont.)

2-58

However, if a process is not descended from a session, this task attribute cannot be
assigned after initiation. An example of such a process is one initiated from an ODT,
such as by a ??RUN (Run Code File) primitive system command.

86000502-000

ELAPSEDLIMIT

ELAPSEDLIMIT
Type Real

Units Seconds

Range o to about 4.31 E68

Default o (no limit)

Read Time Anytime

Write Time Anytime

Inheritance See below

Overwrite Rules Standard

Host Services Supported

Attribute Number 57

Synonym None

Restrictions None

. Explanation

The ELAPSEDLIMIT task attribute specifies the maximum elapsed time for a process.
If the ELAPSEDTIME task attribute value reaches the same value as ELAPSEDLIMIT,
the process is discontinued. Refer to the ELAPSEDTIME description later in this
section for details.

Inheritance

Although ELAPSEDLIMIT is not inherited from the parent, the ELAPSEDLIMIT value
of a process indirectly limits the elapsed time for all its descendants. This is true because
when a process terminates, any in-use descendants of that process are discontinued with
a "PARENT PROCESS TERMINATED" error.

If the operator defines a default value for the ELAPSEDLIMIT attribute of a job queue,
the value is inherited by WFL jobs run from that job queue. If the operator defines a
limit value for the ELAPSEDLIMIT attribute of a job queue, then WFL jobs that specify
a greater ELAPSEDLIMIT in the job attribute list are not allowed in that job queue.
For an introduction to job queue defaults and limits, refer to the discussion of tasking
from programming languages in the A Series Task Management Programming Guide.

Run-Time Error

ELAPSED TIME LIMIT EXCEEDED

The process ran for longer than the time specified by ELAPSED LIMIT. The
process is discontinued with mSTORYCAUSE = 3 (RESOURCECAUSEV) and
HISTORYREASON = 10 (ELAPSEDEXCEEDEDV).

86000502-000 2-59

ELAPSEDTIME

ELAPSEDTIME

2-60

Type Real

Units See below

Range o to about 4.31 E68

Default None

Read Time Anytime

Write Time Never

Inheritance None

Overwrite Rules None (read-only)

Host Services Supported

Attribute Number 15

Synonym None

Restrictions None

Explanation

The ELAPSEDTIME task attribute records the total amount of time that has passed
since the initiation of the process. The process is discontinued if the value of the
ELAPSEDTIME task attribute reaches the same value as the ELAPSEDLIMIT task
attribute. Refer to the ELAPSEDLIMIT description in this section for details.

The ELAPSEDTIME value is unaffected by any DR (Date Reset) or TR (Time Reset)
system commands entered while the process is in use. However, the ELAPSEDTIME
value of a WFL job is set to zero when the job is restarted after a halt/load.

Units

When accessed from WFL, the ELAPSEDTIME value is expressed in units of seconds.
When accessed from other languages, the value is expressed in units of 2.4 microseconds.

86000502-000

ERROR

ERROR

Type Real (string in WFL)

Units Not applicable

Range See "Explanation" below

Default 0

Read Time Anytime

Write Time Never

Overwrite Rules None (read only)

Inheritance None

Host Services Not supported

Attribute Number· 25

Synonym TASKATIERR

Restrictions None

Explanation

The ERROR task attribute indicates whether an error resulted from the most recent
attempt to access a task attribute of this process. If an error did result, the ERROR

. value also indicates which task attribute was being accessed.

If read in WFL, the ERROR task attribute returns a string value. If the most recent
task attribute access had an error, then the string is the name of the task attribute that
was being accessed. If the most recent task attribute access did not cause an error, the
ERROR task attribute returns a null string.

If read in other languages, the ERROR task attribute returns a real value. If the most
recent task attribute access caused an error, the ERROR value is the negative of the
attribute number of the attribute in error .. (The USERCODE task attribute is an
exception, as discussed in the following table.) If the most recent task attribute access
did not cause an error, the ERROR value is O.

The ERROR value has the following fields, which can be accessed at the bit level:

Field

[46:01]

[27:20]

[07:08]

86000502-000

Meaning

If set, the last task attribute access caused an error. Otherwise, it did not
cause an error.

If the value in [07:08] is 8 (meaning a USERCODE aSSignment error),
then this field contains a USERDATA error code. For a list of the most
common USERDATA errors that can be stored in this field, refer to
Table 2-3, "USERDATA Errors." For a complete list, and general
information about USERDATA errors, refer to the A Series Security
Administration Guide.

If [46:01] is set, this field contains the number of the last task attribute
that was accessed. The task attributes are listed by number in
Table 2-4, "Task Attributes by Number."

2-61

ERROR (cont.)

2-62

For details about how to access these fields, refer to "Accessing Task Attributes at the
Bit Level" in Section 1, "Accessing Task Attributes."

The value of the ERROR task attribute is automatically erased when the task attribute
is read by any process. Most MeSs read this task attribute for processes initiated from
sessions. Therefore, if you initiate a process from a session, you can expect the ERROR
task attribute to be blank even if a task attribute error has occurred.

In a memory dump or a program dump, you might see an ERROR value even though no
task attribute error occurred. This is because the ERROR task attribute contains the
attribute number of the task attribute most recently assigned, even if no error occurred.
Also, the ERROR value is used by the system software as scratch storage while ajob is
being restarted. Both these types of values are visible only in dumps; a program that
reads the task attribute finds a value of O.

For more information about task attribute errors, refer to "Task Attribute Errors" in
Section 1, "Accessing Task Attributes."

The following table lists and defines the USERDATA error numbers that can occur in
field [27:20] of the ERROR task attribute value. .

Error Code

8

9

10

16

17

35

36

45

51

Table 2-3. USERDATA Errors

Definition

No *SYSTEM/USERDATA file present.

No entry exists with the requested usercode.

The password supplied was invalid, or none was supplied when one was
required.

This usercode is not a viable usercodej its entry has no system node.

This usercode has been marked SUSPENDED.

The usercode/password syntax was incorrect.

No usercode was specified.

The password has expired.

The password associated with the usercode has expired, and
ENFORCEEXPIREDPW is true for the usercode.

Table 2-4 lists the numbers that can be returned in field [07:08] of the ERROR task
attribute value, and the names of the corresponding task attributes. Note that some
numbers are intentionally omitted because no task attributes correspond to those
numbers.

86000502-000

ERROR (cont.)

Table 2-4. Task Attributes by Number

Number/Name Number/Name Number/Name

o NAME 33 DECKGROUPNO 72 ITI N ERARY

1 MIXNUMBER 34 CLASS 73 DATABASE

2 CORE 35 COMPILETYPE 74 LIBRARY

3 PRIORITY 37 MYPPB 75 VISIBILITY

4 MAXPROCTIME 38 ORGUNIT 78 TIMESTARTED

5 MAXIOTIME 39 MAXCARDS 79 STARTIIME

6 TARGET 40 MAXLINES 81 JOBSUMMARY

7 STACKSIZE 41 JOBNUMBER 82 CHECKPOINTABLE

8 USERCODE 42 CHARGE 83 BRCLASS

9 TASKVALUE 44 DESTNAME 84 SWI

10 HISTORY 45 SOURCESTATION 85 SW2

11 TYPE 46 DESTSTATION 86 SW3

12 STATUS 47 SOURCEKIND 87 SW4

13 ACCUMPROCTIME 48 RESTARTED 88 SW5

14 ACCUMIOTIME 49 MAXWAIT 89 SW6

15 ELAPSEDTIME 50 STACKLIMIT 90 SW7

16 EXCEPTIONTASK 52 FETCH 91 SW8

17 LOCKED 53 RESOURCE 92 INHERITMCSSTATUS

18 STOPPOINT 55 FAMILY 94 TADS

19 PARTNER, 56 WAITLIMIT 95 LANGUAGE

20 STATION 57 ELAPSEDLIMIT 96 CODEVISIBILITY

21 EXCEPTIONEVENT 58 TASKLIMIT 97 JOBSUMMARYTITLE

22 OPTION 59 DISKLIMIT 98 NOJOBSUMMARYIO

23 VALIDITYBITS 60 TANKING 99 PRINTDEFAULTS

24 FILECARDS 61 ACCESSCODE 100 ACCEPTEVENT

25 ERROR 62 SUBSYSTEM 101 LlBRARYUSERS

27 PARTNEREXISTS 63 BACKUPFAMILY 102 AUTOSWITCHTOMARC

28 RESTART 64 HOSTNAME 103 DISPLAYONLYTOMCS

29 BDNAME 66 HISTORYTYPE 104 INITPBITCOUNT

30 STACKHISTORY 67 HISTORYCAUSE 105 INITPBITIIME

31 SUBSPACES 68 HISTORYREASON 106 OTHERPBITCOUNT

32 TASKFILE 70 HSPARAMSIZE 107 OTHERPBITTIME

continued

86000502-000 2-63

ERROR (cant.)

Table 2-4. Task Attributes by Number (cant.)

Number/Name Number/Name Number/Name

108 LlBRARYSTATE 116 APPLYLIST 122 MCSNAME

109 TASKWARNINGS 117 TASKERROR 123 AUTORESTORE

110 SUPPRESSWARNING 118 TEMPFILELIMIT 124 DEPTASKACCOUNTING

111 FILEACCESSRULE 119 TEMPFILEMBYTES 125 FILEACCOUNTING

112 SAVEMEMORYLIMIT 120 CONVENTION

113 TASKSTRING 121 SOURCENAME

Run-Time Error

ERROR ATTRIBUTE IS READONLY

An attempt was made to assign a value to the ERROR task attribute. The
assigning process, if nonprivileged, is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) and HISTORYREASON = 9 (ATTREADONLYV).

2-64 86000502-000

EXCEPTIONEVENT

EXCEPTION EVENT
Type Event

Units Not applicable

Range HAPPENED, NOT HAPPENED

Default NOT HAPPEN ED

Read Time Anytime

Write Time See below

Inheritance None

Overwrite Rules See below

Host Services Not supported

Attribute Number 21

Synonym None

Restrictions Not available in WFL or APLB

Explanation

The EXCEPTIONEVENT task attribute accesses a predeclared event called the
exception event that is associated with each process. When the STATUS task attribute
of a process changes value, the system causes the exception event of the exception task
of that process. By default, the parent is the exception task of a dependent process.
Therefore, the exception event is a convenient means of informing the parent when one
of its offspring has terminated or otherwise changed status.

The system also causes the exception event of a permanent library or control library
whenever the value of the LIBRARYUSERS task attribute changes to zero.

The operator can also cause the exception event of a process by using the HI (Cause
EXCEPTIONEVENT) system command.

The EXCEPTIONEVENT task attribute can be used in any ALGOL or COBOL74
statement that operates on an event. For example, a process can wait on the
EXCEPTIONEVENT task attribute or can cause it.

A process can access the exception event of itself or of an ancestor process. The process
cannot access the exception event of a descendant, sibling, or cousin process.

For a discussion of exception tasks, ancestors, siblings, cousins, and descendants,
refer to the discussion of interprocess relationships in the A Series Task Management
Programming Guide.

86000502-000 2-65

EXCEPTIONEVENT (cont.)

2-66

Write Time

A process can cause or reset the EXCEPTIONEVENT at any time. However, a process
can never assign an event variable to EXCEPTIONEVENT. For example, the following
ALGOL statement compiles successfully, but produces a run-time error:

T.EXCEPTIONEVENT ~= EVNT;

Overwrite Rules

The statements that access EXCEPTIONEVENT can be applied only to an in-use
process.

Run-Time Errors

EXCEPTIONEVENT ATTRIBUTE IS READONLY

A process attempted to assign an event variable to the EXCEPTIONEVENT
task attribute. The assigning process, if nonprivileged, is discontinued with
HISTORYCAUSE = 2 (PROGRAMCAUSEV) and HISTORYREASON = 9
(ATTREADONLyv).

NON ANCESTRAL TASK REFERENCE

A process attempted to access the exception event of a descendant, sibling,
or cousin process. The process, if nonprivileged, is discontinued with
HISTORYCAUSE = 2 (PROGRAMCAUSEV) and HISTORYREASON = 130
(NONANCESTRALEXCEPTEVENTV).

86000502-000

EXCEPTIONTASK

EXCEPTIONTASK
Type Task

Units Not applicable

Range See below

Default See below

Read Time Anytime

Write Time Anytime

Inheritance None

Overwrite Rules Standard

Host Services Not supported

Attribute Number 16

Synonym None

Restrictions Not available in WFL or APLB

Explanation

The EXCEPTIONTASK task attribute specifies the exception task for a process. When
the STATUS task attribute of a process changes value, the system causes the exception
event of the exception task for that process. (Note that the "exception task" is not
necessarily a task; it could be ajob.) A program can use the EXCEPTIONTASK task
attribute to assign the process that is to be used as the exception task, or to access task
attributes of the exception task.

For further information, refer to the discussion of interprocess relationships in the
A Series Task Management Programming Guide.

Range

A process can assign any ancestral, sibling, or cousin process as the. exception task.
Descendant processes cannot be assigned as the exception task. (For a discussion
of ancestral, sibling, cousin,. and descendant processes, refer to the discussion of
interprocess relationships in the A Series Task Management Programming Guide.)

An independent process has no exception task. When any process attempts to access the
exception task of an independent process, the attempt is treated as a reference to the
MYSELF task variable of the accessing process.

For remote tasks, the exception task is always the parent process. No other process
can be assigned as the exception task. For information about remote tasks, refer to
the discussion of tasking across multihost networks in the A Series Task Management
Programming Guide.

86000502-000 2-67

EXCEPTIONTASK (cont.)

2-68

Default

For a task, the parent is the default exception task. For ajob, the job is its own default
exception task. For a task initiated "by a session, the controlling MCS is the default
exception task.

Run-Time Errors

UP LEVEL TASK ASSIGNMENT

An attempt was made to assign a descendant process as the exception task. The
assigning process, if nonprivileged, is discontinued with HISTORYCAUSE = 2 and
HISTORYREASON = 113.

NON ANCESTRAL TASK REFERENCE

A sibling or cousin process is assigned as the exception task, and an attempt
was made to access the exception event of the exception task using a statement
such as "CAUSE (MYSELF.EXCEPTIONT ASK.EXCEPTIONEVENT)".
The accessing process is discontinued, even if it is privileged, with
HISTORYCAUSE = 2 (PROGRAMCAUSEV) and HISTORYREASON = 130
(NONANCESTRALEXCEPTEVENTV).

86000502-000

FAMILY
Type String

Units Not applicable

Range <family specification>

Default See below

Read Time Anytime

Write Time Anytime

Inheritance See below

Overwrite Rules Standard

Host Services Supported

Attribute Number· 55

Synonym None

Restrictions None

Range'

<family specification>

-<target family>- = -<primary family>>-------------·~

~-r OTHERWISE -<alternate family>
L ONLY _________ ---J

<target family>
<primary family>
<alternate family>

These are each nonquote identifiers.

Explanation

FAMILY

The FAMILY task attribute can assign one or two substitute families to be used
whenever the process references the target family. The substitute families are called the
primary family and the alternate family. The alternate family is optional.

The process searches for and creates files on the substitute families whenever it would
have used the target family. The following ru1es determine whether both substitute
families, or only the primary family, are searched:

• When an existing file is being opened or executed, if the file cannot be found on the
primary family, the alternate family is searched. If the TITLE file attribute does
not include a usercode, then the file is searched for first under the usercode of the
process and then as a nonusercoded file on each of the substitute families.

• When a file is being created, changed, removed, or secured, only the primary family
is searched. The alternate family is not used.

86000502-000 2-69

FAMILY (cont.)

2-70

• In. the COpy and ADD statements, only the primary family is used for both sources
and destinations; the alternate family is not used.

The most typical use of this task attribute is to establish a default family for files that do
not have a family specified. Such files default to DISK if the FAMILY task attribute is
not used. However, if the FAMILY task attribute is used, and the target family specified
is DISK, then such files default to the substitute family in the FAMILY value. The
following is an example of a FAMILY value that establishes ORDSP ACK as the default
family for a process:

DISK = ORDSPACK OTHERWISE DISK

The target fanilly, primary family, and alternate family must be disk families. Tapes
cannot be specified in the value of the FAMILY attribute.

Default

The default FAMILY setting is null, which means that no substitution takes place. The
family specified by the TITLE or F AMIL YN AME file attribute is used. If no family name
is assigned to either of these file attributes, then DISK is used by default.

Inheritance

A process inherits the FAMILY value of its parent.

A process initiated from a MARC or CANDE session inherits the FAMILY value
associated with the session. At log-on time, the session receives the FAMILY usercode
attribute associated with the usercode in the USERDATAFILE. The session FAMILY
can be changed using a MARC or CANDE FAMILY command.

If the job attribute list ofa WFLjob includes a USERCODE assignment, but no FAMILY
assignment, then the job inherits any FAMILY usercode attribute that is defined for the
usercode in the USERDAT AFILE.

If a FAMILY value is assigned to a job queue, that value is inherited by WFL jobs
run from that queue. A WFL job is not allowed in a job queue if the job attribute list
specifies a FAMILY value different from that of the job queue. However, the job can
assign a different FAMILY value after initiation.

Examples

Consider the following ALGOL program, which declares and opens two different disk
files:

BEGIN
FILE F(KIND=DISK,OEPENDENTSPECS=TRUE,TITLE="F ON TOOLS.");
FILE G(KIND=DISK,DEPENDENTSPECS=TRUE);
OPEN (F);
OPEN (G);

END.

86000502-000

FAMILY (cont.)

The following WFL statement would run the program and cause it to search for file F on
ORDSPACK and then on DISK if necessary, and to search for file G on DISK:

RUN OBJECT/FILEOPEN;FAMILY TOOLS = ORDSPACK OTHERWISE DISK;

The following WFL statement would run the program and cause it to search for file F on
TOOLS and for file G on ORDSP ACK, and then on DISK if necessary:

RUN OBJECT/FILEOPEN;FAMILY DISK = ORDSPACK OTHERWISE DISK;

Run-Time Errors

FAMILY ATTRIBUTE INCORRECT SYNTAX

An attempt was made to assign FAMILY a value that does not follow the syntax for
family specification. The assigning process, if nonprivileged, is discontinued with
HISTORYCAUSE = 2 (PROGRAMCAUSEV) and HISTORYREASON = 131
(INCORRECTSYNT AXV).

REQUIRES *PK <family name> <file name>

This error occurs if the FAMILY value causes the process to search for a nonexistent
family. In this message, < family name> is the name of the family being searched for,
and < file name> is the value of the FILENAME attribute of the requested file. The
process waits until an operator takes action. Refer to the A Series System Operations
Guide for information on how to respond to waiting processes.

86000502-000 2-71

FETCH

FETCH

2-72

Range

<fetch specification>

Type

Units

Range

Default

Read Time

Write Time

Inheritance

Overwrite Rules

Host Services

Attribute Number

Synonym

Restrictions

A string of up to 256 EBCDIC characters.

Explanation

String

Not applicable

<fetch specification>

Null string

Never

Before initiation

None

See below

Not supported

52

None

Available only in WFL

The FETCH task attribute stores instructions for the operator. The programmer can
assign a string of text to FETCH. The operator can use the PF (Print Fetch) system
command to display the FETCH value.

Ira WFL job contains a FETCH specification, and the system option NOFETCH is reset,
then the job cannot be initiated until the operator enters an OK (Reactivate) system
command. The operator can set or reset the NOFETCH system option with the OP
(Options) system command.

Overwrite Rules

The FETCH task attribute can be assigned only in the job attribute list in a WFL job.
For the syntax of this assignment, refer to the A Series Work Flow Language (WFL)
Programming Reference Manual.

8600 0502-000

FETCH (cont.)

Example

The following is an example of a WFL job that contains a FETCH specification. This
specification asks the operator to mount several tapes before allowing the job to proceed.

8600 0502~000

?BEGIN JOB FILEIT;
FETCH = "THIS JOB NEEDS THREE TAPE DRIVES";
RUN NIGHTLY/UPDATE;

?END JOB

2-73

FILEACCESSRULE

FILEACCESSRULE

2-74

Type Mnemonic

Units Not applicable

Range See "Explanation" below

Default DEFAULT

Read Time Anytime

Write Time See below

Inheritance See below

Overwrite Rules Standard

Host Services Supported

Attribute Number 111

Synonym None

Restrictions None

Explanation

The FILEACCESSRULE task attribute specifies whether file access security checking is
based on the identity of the process that declares the file or the process that opens the
file. This task attribute is relevant only in cases where the declaring process and the
opening process are different because a logical file is being shared among processes. For
these cases, the value of the FILEACCESSRULE task attribute of the accessing process
determines which type of security checking is used.

The following are the possible values and their meanings:

Mnemonic
Value

DEFAULT

ACTOR

DECLARER

I nteger Value

o

1

2

Meaning

This value is synonymous with DECLARER.

File access security checking is based on the
identity of the process that accesses the file. Only
a privileged process or an MCS can assign this
value to FILEACCESSRULE.

File access security checking is based on the
identity of the process that declares the file.

For a further discussion of file access security, refer to the discussion of shared files in
the A Series Task Management Programming Guide.

Write Time

The ACTOR value can be assigned only after the process is initiated. The DEFAULT
and DECLARER values can be assigned at any time.

86000502-000

FILEACCESSRULE (cont.)

Inheritance

A process inherits the FILEACCESSRULE value of its parent.

Run-Time Errors

FILEACCESSRULE ATTRIBUTE INCORRECT SYNTAX

A process attempted to assign FILEACCESSRULE a value not in the possible range of
values. The assigning process, if nonprivileged, is discontinued with HISTORYCAUSE
= 2 (PROGRAMCAUSEV) andHISTORYREASON = 131 (INCORRECTSYNTAXV).

PRIVILEGED REQUIRED TO SET FILEACCESSRULE = ACTOR

A process that was neither privileged nor an MCS attempted to assign the
FILEACCESSRULE attribute the value ACTOR. The assigning process is discontinued
with HISTORYCAUSE = 2 (PROGRAMCAUSEV) and HISTORYREASON = 136
(PRIVILEGEREQUIREDV).

SETTING FILEACCESSRULE TO ACTOR IS RESTRICTED TO ACTIVE TASKS

A process attempted to assign a value of ACTOR to the FILEACCESSRULE task
attribute of a task variable that is not in use. This message can also occur if the
ACTOR value is assigned through run-time task equation or is inherited from a
FILEACCESSRULE assignment in the object code file. This error is nonfatal, but the
requested assignment is ignored.

86000502-000 2-75

FILEACCOUNTING

FILEACCOUNTING

2-76

Type Mnemonic

Units Not applicable

Range See uExplanation" below

Default See below

Read Time Anytime

Write Time Before initiation

Inheritance See below

Overwrite Rules Standard

Host Services Not supported

Attribute Number 125

Synonym None

Restrictions None

Explanation

The FILEACCOUNTING task attribute specifies whether the system should generate
log entries when the process opens or closes a file. You can use FILEACCOUNTING
to improve overall system performance by reducing the number of log entries the
system generates. The best way to achieve this effect is by establishing a system-Wide
FILEACCOUNTING default, as described later under "Default and Inheritance."

The following are the possible values of FILEACCOUNTING:

Mnemonic
Value

UNSPECIFIED

ANONYMOUS

Integer Value

o

1

Meaning

This value has no effect on logging.

The system does not generate Major Type 1, Minor
Type 5 (File Open) or Major Type 1, Minor Type 6
(File Close) log entries for this process. The system
keeps general statistics on the file usage of the
process, and issues a summary of these statistics
as the Major Type 1, Minor Type 25 (File
Statistics) log entry when the process terminates.
However, if the system is enforcing a
DEPTASKACCOUNTING value of ANONYMOUS for
the process, then at termination time the system
does not generate this log entry. Instead, the
system adds the file usage statistics of the process
to the file usage statistics of the parent. (Refer to
the discussion of the DEPTASKACCOUNTING task
attribute in this section.)

continued

86000502-000

continued

Mnemonic
Value

IDENTIFIED

Integer Value

2

Default and Inheritance

FILEACCOUNTING (cont.)

Meaning

The system generates File Open and File Close log
entries for this process. The system does not
create any File Statistics log entry for the process,
nor does it add file statistics for the process to the
parent's statistics.

Note that an operator can use the LOGGING
(Logging Options) system command to prevent
logging of any File Open and File Close log entries.
In this case, even processes with
FILEACCOUNTING = IDENTIFIED do not receive
File Open or File Close log entries.

A process inherits the FILEACCOUNTING value of its parent.

The system administrator can use the ACCOUNTING (Resource Accounting)
system command to specify a system-wide default for FILEACCOUNTING.
The system administrator can also associate a default value with a usercode by
including a FILEACCOUNTING usercode attribute in the usercode definition in the
USERDATAFILE.

When a process is initiated, the system assigns the FILEACCOUNTING task attribute
attribute the maximum of its current value (whether assigned or inherited), the system
default value, and the usercode value. The integer values for each FILEACCOUNTING
mnemonic were previously listed under the "Explanation" subheading.

For example, suppose that FILEACCOUNTING has a value of ANONYMOUS
in the task variable, a value of IDENTIFIED at the system level, and a value of
UNSPECIFIED at the usercode level. At initiation time, the process is assigned a
FILEACCOUNTING value of IDENTIFIED by the system, because IDENTIFIED has a
higher numeric value (2) than ANONYMOUS or UNSPECIFIED.

On a system running InfoGuard software with a security class of S2, the system sets
FILEACCOUNTING to IDENTIFIED for all processes when they are initiated. This
rule overrides all of the other factors affecting the FILEACCOUNTING value.

86000502-010 2-77

FILECARDS

FILECARDS

2-78

Type String

Units Not applicable

Range <file equation list>

Default Null string

Read Time See below

Write Time Anytime

Inheritance See below

Overwrite Rules See below

Host Services Supported

Attribute Number 24

Synonym FILE

Restrictions None

Range

<file equation list>

rf-. •
~ FILE --<file internal name>--<file attribute assignment list~

<file internal name>

--<simple name»-----------------------i

<file attribute assignment list>

- (-.L<fi 1 e attri bute>-- = ~fi 1 e attri bute val ue>=L) -----I

<file attribute>
<file attribute value>

For descriptions of all the file attributes and the values they can be assigned, refer to the
A Series File Attributes Programming Reference Manual.

Explanation

The FILE CARDS task attribute can be used to assign file attributes to one or more of
the files declared by the process. Assignments to the FILECARDS task attribute are
sometimes referred to as file equations. This task attribute is most frequently assigned
by the parent in order to cause a task to use a file different from the one it otherwise
would use.

The < file internal name> variable corresponds to the internal name of the file as it is
declared in the process. The internal name is the value of the INTNAME file attribute.

86000502-010

FI LECARDS (cont.)

If INTNAME is not assigned for the file, then it receives the file identifier as its value.
The FILENAME file attribute has no effect on the internal name.

Thus, the following ALGOL file declarations both declare files with an internal name of
CARD:

FILE CARD(FILENAME="INPUT/DATA.");
FILE LINE(INTNAME="CARD. II ,FILENAME="INPUT/DATA. II

);

If the FILECARDS value assigns attributes to a file that is not declared in the process,
no error results, but the file attribute assignments are never used.

The file attributes assigned by FILECARDS are assigned to the logical file the first time
the process references the file. A process is said to reference a file whenever it accesses
a file attribute or opens a file. The FILECARDS file attribute assignments are merged
with those in the file declaration. Where there is a conflict, the values assigned through
FILECARDS override those assigned in the declaration. The file attributes assigned by
FILECARDS can, in turn, be overridden by file attribute assignment statements later in
the process.

FILECARDS can be assigned either before or during process execution. A given
FILECARDS assignment has no affect on files that the process has already referenced at
the time the FILE CARDS assignment is made.

Note that, for a file declared within a procedure, the system creates a new logical file
each time the process enters that procedure, and deallocates the logical file each time the
process exits the procedure. The system applies the FILECARDS values to the logical
file the first time the process references the file after each time the process enters the
procedure.

Read Time

The FILE CARDS task attribute can be read at any time from ALGOL. However, the
value returned is encoded in an internal form that does not resemble the original
FILECARDS assignments. The FILECARDS task attribute returns a null value if read
from COBOL74 and cannot be read from WFL at all.

Inheritance

Internal processes inherit the FILECARDS value of the parent.

86000502-010 2-79

FILECARDS (cont.)

2-80

Overwrite Rules

In ALGOL or COBOL74, if the FILECARDS attribute ofa task variable is assigned
more than once, each assignment is merged with the previous value of the FILECARDS
attribute. A file attribute assignment in the existing value is overwritten only in the
following cases:

• If the new assignment specifies a different value for the same attribute of the same
file.

• If a null string is assigned to FILECARDS. In this case, the FILECARDS value is
restored to null.

In WFL, a FILECARDS assignment is merged with the existing FILECARDS value if the
assignment includes an asterisk (*) or if the < file internal name> construct is a string
primary. If no asterisk is included, and the < file internal name> construct is a name
constant, then the previous FILECARDS value is discarded.

When a process is initiated, the FILECARDS values assigned through assignments to the
task variable, object code file assignments, and inheritance from the parent are merged
together into a single FILECARDS value. If these sources assign conflicting values to
the same file attribute of the same file, then standard overwrite rules determine which
file attribute assignment takes precedence.

Examples

In WFL, the syntax for assigning FILECARDS is distinguished by several special
features, which are illustrated in the following example:

500 RUN OBJECT/DELTA ON PACK;
600 FILE OUT(KIND=DISK,TITLE=(BARNES)ACCUM/DATA ON ORDSPACK);
700 FILE IN=(JACOB)INPUT/DATA ON ORDSPACK;
800 FILECARDS CARD(KIND=READER);

The RUN statement at line 500 initiates a task. The statements at lines 600, 700,
and 800 are all assignments to the FILECARDS attribute of that task. Although
FILECARDS is a string-valued task attribute, in WFL the FILECARDS value is not
enclosed in quotation marks ("). The assignment at line 600 shows how multiple file
attributes can be assigned to the same file. The assignment at line 700 shows an
abbreviated syntax that can be used if TITLE is the only attribute being assigned to
a file. Line 800 shows the same syntax as line 600, except that FILECARDS is used
instead of its synonym FILE.

The CANDE and MARC syntaxes for assigning FILECARDS are the same as the WFL
syntax, except that FILECARDS must be referred to by its synonym, FILE.

86000502-010

FILECARDS (cont.)

The ALGOL syntax for assigning FILECARDS also differs from that used to assign
other string-valued task attributes. The value is terminated by 48"00" instead of by a
period (.). The following is an example:

REPLACE CTASK.FILECARDS BY
II FILE CARD (KIND=DISK, TITLE=ALGOL/TASK); II
II FILE CODE (KIND=DISK, TITLE=OBJECT /ALGOL/TASK) ; II 48 11 00";

The following ALGOL statement resets the FILECARDS value to a null string:

REPLACE T.FILECARDS BY 48 11 0011
;

The following COBOL74 statements assign attributes to two files. The second
assignment does not overwrite the first assignment, but rather is merged with it:

CHANGE ATTRIBUTE FILECARDS OF TASK-VAR-l TO
IIFILE CARD(KIND=DISK,TITLE=JUNK/JUNK);II.

CHANGE ATTRIBUTE FILECARDS OF TASK-VAR-l TO
IIFILE LINE(KIND=DISK,TITLE=JUNK/JUNK3);II.

Run-Time Errors

FILECARDs ATIRIBUTE 15 READONLY ON ACTIVE TASK

An attempt was made to assign the FILECARDS value of an in-use process. The
assigning process, if nonprivileged, is discontinued with mSTORYCAUSE = 2
(PROGRAMCAUSEV) and mSTORYREASON = 33 (READONLYONACTIVEV).

FILECARDs ATIRIBUTE INCORRECT SYNTAX

There were one or more syntax errors in the file attribute assignments in the
FILECARDS value. The assigning process, if nonprivileged, is discontinued with
ffiSTORYCAUSE = 2 (PROGRAMCAUSEV) and mSTORYREASON = 131
aNCORRECTSYNT~.

86000502-010 2-81

HISTORY

HISTORY

2-82

Type Real

Units Not applicable

Range See "Explanation" below

Default 0

Read Time Anytime

Write Time Never

Inheritance None

Overwrite Rules None (read-only)

Host Services Not supported

Attribute Number 10

Synonym None

Restrictions None

Explanation

The HISTORY task attribute records the type of termination a process had. If
termination was abnormal, mSTORYalso stores information about why the abnormal
termination occurred. The mSTORY value is divided into the following fields:

Field

[47:01]

[46:01]

[45:01]

[43:20]

[23:08]

[15:08]

[07:08]

Meaning

The operating system sometimes sets this bit for internal purposes.

If this bit is set, and field [07:08] stores a value of 4, then initiation of
the process failed.

If this bit is set, the process cannot be discontinued.

The operating system sometimes stores information in this field for
internal purposes.

If the process was discontinued or is suspended, this field stores the
specific reason. This field corresponds to the value of the
HISTORYREASON task attribute. Refer to the HISTORYREASON
description in this section for details.

If this process was discontinued or is suspended, this field stores the
general reason. This field corresponds to the value of the
HISTORYCAUSE task attribute. Refer to the HISTORYCAUSE description
in this section for details.

This field stores information about the process state. If the process has
terminated, this field also records the general type of termination. This
field corresponds to the value of the HISTORYTYPE task attribute. Refer
to the HISTORYTYPE description in this section for details.

For details about how to access these fields, refer to "Accessing Task Attributes at the
Bit Level" in Section 1, "Accessing Task Attributes."

86000502-010

HISTORYCAUSE

HISTORYCAUSE
Type Mnemonic

Units Not applicable

Range See "Explanation" below

Default 0

Read Time Anytime

Write Time Never

Inheritance None

Overwrite Rules None (read-only)

Host Services Supported

Attribute Number 67

Synonym None

Restrictions None

Explanation

The HISTORYCAUSE task attribute specifies what general type of condition caused the
process to terminate abnormally or be suspended. The mSTORYCAUSE value is the
same as field [15:08] of the mSTORY task attribute.

If the process did not terminate abnormally and is not suspended, the mSTORYCAUSE
value is O. No mnemonic is associated with this value.

If the process terminated abnormally, then the msTORYTYPE value is DSEDV, and the
following are the possible mSTORYCAUSE values and their meanings:

Mnemonic Value

(none)

OPERATORCAUSEV

PROGRAMCAUSEV

RESOURCECAUSEV

86000502-010

Integer Value

o

1

2

3

Meaning

The process has not been initiated, is still
in use, or terminated normally.

The process was discontinued by a system
command such as DS (Discontinue).

The process was deliberately terminated
for one of the following reasons:

• A value of TERMINATED was
programmatically assigned to the
STATUS task attribute.

• The process attempted an action that
is not allowed by the operating
system.

The process was terminated for exceeding
a resource limit, such as MAXPROCTIME
or MAXIOTIME.

continued

2-83

HISTORYCAUSE (cont.)

2-84

continued

Mnemonic Value

FAULTCAUSEV

SYSTEM CAUS EV

DCERRCAUSEVorDCERRV

10ERRCAUSEV or 10ERRV

SOFTIOERRCAUSEV or
SOFTIOERRV

NEWIOERRCAUSEVor
NEWIOERRV

UNIMPLEMENTEDCAUSEV
or UNIMPLEMENTEDV

UNSPECIFIEDCAUSEV

EBDMSERRCAUSEVor
EBDMSERRV

NETWORKCAUSEV

SOFTIOERR2CAUSEV or
SOFTIOERR2V

I nteger Value

4

5

6

7

8

9

10

11

12

13

14

Meaning

The process was terminated because it
requested a machine operation that could
not be executed, such as dividing by zero
or reading past the end of an array.

The process was terminated because it
violated a system parameter, such as
overlay row size or the amount of memory
allowed.

The process was terminated because of a
data comm error.

The process was terminated because of a
physica I I/O error.

The process was terminated because of a
logical I/O error.

The process was terminated because of an
error in opening a file.

The process was terminated because it
attempted to use a feature that has not
been implemented.

The process was terminated because of an
error of an unknown type.

The process was terminated because of a
Data Management System II (DMSII) error.

The process was terminated because of a
BNA-related error. For example, the
process might have failed initiation
because of a missing host or a missing
object code file on a remote host.

The process was terminated because of a
logical VO error.

If the process is suspended, then the mSTORYTYPE value is STEUV, and the following
are the possible mSTORYCAUSE values and their meanings:

Mnemonic Value Integer Value

OPERATORCAUSEV 1

PROGRAMCAUSEV 2

Meaning

The process was suspended by the
ST (Stop) system command.

The process was suspended for one of the
following reasons:

• A resource needed by the process is
missing.

• The STATUS task attribute was
programmatically assigned a value of
SUSPENDED.

continued

86000502-010

continued

Mnemonic Value

SYSTEMCAUSEV

NETWORKCAUSEV

Integer Value

5

13

HISTORYCAUSE (cont.)

Meaning

The process was suspended because of a
shortage of available memory.

The process was suspended because of a
BNA condition.

For a list of process termination messages and their relationship to mSTORYCAUSE
values, refer to the discussion of process history in the A Series Task Management
Programming Guide.

86000502-010 2-85

HISTORYREASON

HISTORYREASON

2-86

Explanation

Type

Units

Range

Default

Read Time

Write Time

Inheritance

Overwrite Rules

Host Services

Attribute Number

Synonym

Restrictions

Mnemonic

Not applicable

See "Explanation" below

o
Anytime

Never

None

None (read-only)

Supported

68

None

Not available in WFL; however, for a
description of how to extract the same
information from the HISTORY task attribute,
refer to "Accessing Task Attributes at the Bit
Level" in Section 1.

The mSTORYREASON task attribute indicates the specific reason why a process
terminated abnormally or was suspended. The mSTORYREASON value corresponds to
field [23:08] of the mSTORY task attribute.

Most mSTORYREASON integer values have mnemonics associated with them. Each
mnemonic briefly describes one reason this mSTORYREASON integer value could
have occurred. You can determine which mnemonic applies in a particular case by using
the mSTORYREASON integer value with the mSTORYTYPE and mSTORYCAUSE
values.

If the process did not terminate abnormally and is not suspended, the
mSTORYREASON value is O. No mnemonic is associated with this value.

One standard method of reading mnemonic-valued task attributes might yield confusing
results if applied to mSTORYREASON. The following is an ALGOL example of this
method:

IF T.HISTORYREASON = VALUE(DIVIDEBYZEROV) THEN •••

The mnemonic DIVIDEB'YZERO is associated with a mSTORYREASON value of 1.
The expression shown in the example evaluates to TRUE whenever mSTORYREASON
has a value of 1. However, a mSTORYREASON value of 1 indicates a DIVIDEBYZERO
erroronlyifmSTORYTYPE = DSEDVand mSTORYCAUSE = FAULTCAUSEV.

8600 0502--010

HISTORYREASON (cont.)

The following is a better method ofreadingHISTORYREASON. This example evaluates
to TRUE only if a DIVIDEBYZERO error occurred:

IF T.HISTORYTYPE = VALUE(DSEDV)
AND T.HISTORYCAUSE = VALUE(FAULTCAUSEV)
AND T.HISTORYREASON = VALUE(DIVIDEBYZEROV) THEN .••

The following pages list the possible HISTORYREASON values for each combination of
HISTORYTYPE and HISTORYCAUSE values. For HISTORYREASON values that
have mnemonics, the mnemonics are listed under the column heading "Mnemonic
Value." For HISTORYREASON values that do not have mnemonics, a short explanatory
phrase is listed under the column heading "History Reason (No Mnemonic)."

HISTORYTYPE = 3 (STEDV), HISTORYCAUSE = 1 (OPERATORCAUSEV)

Integer Value

o

1

Mnemonic Value

(No mnemonic. This value means the ST
(Stop) system command was entered from
an ODt)

REMOTELYCAUSEDV

HISTORYTYPE = 3 (STEDV), HISTORYCAUSE = 2 (PROGRAMCAUSEV)

Integer Value

1

Mnemonic Value

RESPONSEREQUIRED

HISTORYTYPE = 3 (STEDV), HISTORYCAUSE = 13 (NETWORKCAUSEV)

Integer Value

3

Mnemonic Value

SUSPENDEDV

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 1 (OPERATORCAUSEV)

Integer Value

o
1

2

Mnemonic Value

RSVPV

CLEARUNITV

JUSTDSEDV

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 2 (PROGRAMCAUSEV)

Integer Value Mnemonic Value

0 MISSINGCODEFILENAMEV

1 MISSINGCODEFILEV

3 INITACTIVETASKV

4 NOEXTERNALRUNV

5 VISITNONACTIVEV

6 ILLEGALVISITV

86000502-010

continued

2-87

HISTORYREASON (cont.)

continued

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 2 (PROGRAMCAUSEV)

Integer Value Mnemonic Value

7 DYNCODEEOFV

8 BADDISTRETCHV

9 ATIREADONLYV

11 NOTSESSIONNUMBERV

12 NONANCESTRALTASKFILEV

13 NOTIMPLEMENTEDV

14 INVALIDACCESSCODEV

15 INCOMPATIBLEBOXESV

18 DEATHINFAMILYV

19 CRITICALBLOCKV

20 BADGOTOV

23 I NVALIDPARAMETERV

25 INCOMPATIBLECODEV

26 NOTEXECUTABLEV

27 UNMATCHEDPARAMSV

28 I NVCOMPILERW

29 SECURITYERRORV

30 LlBMAINTV

31 ILLEGALTASKXFERV

32 BADRESIZEDEALLOCV

33 READONLYONACTIVEV

37 MISSINGINTRINSICV

38 I NCOMPATIBLELEVELV

39 INFANTICIDEV

40 NOTBOUNDV

41 ILLEGALOWNARRAYV

42 DIMSIZERRORV

43 UPLEVELATIACHV

44 ILLEGALSWAPV

46 BADTAS KATIR I BUTEV

47 MISSINGCARDDECKV

48 BADRESTARTV

49 BADEVENTUSAGEV

50 BADGIVELOCKV

continued

2-88 86000502-010

HISTORYREASON (cont.)

continued

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 2 (PROGRAMCAUSEV)

Integer Value Mnemonic Value

51 BADGETLOCKV

52 ON LYMCSMAYSETV

53 DCKEYINSIZEV

54 ON LYMCSTASKINGV

56 NONOWNERACCESSV

57 COMPILERSONLYV

58 TASKLIMITEXCEEDEDV

59 AXBADARRAYV

60 RUNTIMEWFLV

61 COMPILERERRORV

62 XSPARAMSV

63 SORTKILLV

64 MISSINGSYSTEMLlBV

65 ALREADYSELECTEDV

66 LlBMISSINGNAMEV

67 L1BTYPEMISMATCHV

68 L1BNOTINITIATEDV

69 CYCLlCPROVISIONV

70 PREVIOUSLYFROZENLlBV

71 LlBIMPLEMENTATIONERRORV

72 FASTTASKFREEZEV

73 NONUNIQLlBV

74 SAVELlBTASKNEVERCALLEDV

75 L1BNEVERFROZEV

77 BADLlBTASKV

78 LlBFEATURENOTIMPLEMENTEDV

79 BADCOMPILERINDEXV

80 L1BNOTPROCESSEDORRUNV

81 LlBMUSTBESEPARATESTACKV

82 I NVALIDPARAMV

83 FORTRANERRV

84 PLIRUNTIMEERRV

85 INTRINSICSERRV

86 MATHERRV

continued

86000502-010 2-89

HISTORYREASON (cont.)

continued

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 2 (PROGRAMCAU5EV)

Integer Value Mnemonic Value

87 FORMATERRV

88 LlBDEI M PLEMENTATIONERRORV

89 LI BLEVELINCOM PATI BLEV

90 BADLlBTITLEV

91 CANTLINKTOASYSTEMLlBV

92 NOTASYSTEMLlBV

93 NOTLIBRARYCAPABLEV

94 LlSTSERRORV

95 LlBPARENTNOTALlBV

96 BADLlBFUNCTIONV

97 I NVALIDATIVALUEV

98 UNAUTHORIZEDLIBUSEV

99 FOREIGNTASKINITFAILV

100 PORTSERRORV

101 LlBCANCELERRV

102 I NVALIDSAVECORELIMlTV

103 NONVISTASKFllEV

104 BADINSCRIBEV

105 BADERASEV

106 CLiENTDIEDINACRV

107 BAD PO BOXUSAG EV

108 I NVALIDSTKNOV

109 BADTCPREQV

110 BYRESTRICTIONV

111 LlBWRONGMARKlEVELV

112 NOINITIATORV

113 UPLEVElTASKASSIGNV

114 FRAMEEXCEEDEDV

115 CODEFI lEI NCOMPATI BLEWITH MCPV

116 CODEFILENOTACTIVEV

117 BADPPBV

118 NOTAFASTTASKV

119 FASTTASKINITTASKV

120 FASTTASKNOPARAMSV

continued

2-90 86000502-010

HISTORYREASON (cont.)

continued

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 2 (PROGRAMCAUSEV)

I nteger Value Mnemonic Value

121 FASTTASKNOTADSV

122 FASTTASKBADEXCEPTIONTASKV

123 STACKHASFAMI LYV

124 FASTTASKFAULTEDV

125 DATABASEDIEDV

126 LlBRARYDIEDV

127 STACKHASUNITATTACHEDV

128 RESTRICTEDACCESSV

129 ATIWRITEONLYV

130 NONANCESTRALEXCEPTEVENTV

131 I NCORRECTSYNTAXV

132 ATTACCESSFAU LTV

133 INVALIDLSNV

134 DATACOM M NOTACTIVEV

135 VALUETOOLARGEV

136 PRIVILEGEREQUIREDV

137 NON LOCALACCEPTEVENTV

138 INVSCHEDACTV

139 INVTIMESTATV

140 INVREACTIVATEV

141 I NVSOURCEV

142 INVDUMPPARAMV

143 INVCPMACTIONV

144 I NVPREFACTIONV

145 I NVDISCONNECTV

146 INVDESTINATIONV

147 BLOCKHASNOSCWV

148 PRPROVIDERGONEV

149 LlBWRONGCODEFILEV

150 (No mnemonic. The stepparent of the
process terminated.)

86000502-010 2-91

HISTORYREASON (cont.)

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 3 (RESOURCECAUSEV)

Integer Value Mnemonic Value

0 PROCESSEXCEEDEDV

1 IOEXCEEDEDV

2 STACKEXCEEDEDV

3 PRINTEXCEEDEDV

4 PUNCH EXCEEDEDV

5 CARDREADEXCEEDEDV

6 MEMORYEXCEEDEDV

8 TAPEEXCEEDEDV

9 WAITEXCEEDEDV

10 ELAPSEDEXCEEDEDV

11 DISKUMITEXCEEDEDV

12 STRING POOlEXCEEDEDV

13 FAMllYSIZEEXCEEDEDV

14 SAVECORELIMITEXCEEDEDV

15 CAUEXCEEDEDV

16 SEGLIMITEXCEEDEDV

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 4 (FAULTCAUSEV)

Integer Value Mnemonic Value

1 DIVIDEBYZEROV

2 EXPOVERFlOWV

3 EXPUNDERFlOWV

4 INVAUDINDEXV

5 I NTEGEROVERFlOWV

6 INACTIVEQV

7 MEMORYPROTECTV

8 I NVALI DOPV

9 lOOPV

10 MEMORYPARITYV

11 SCANPARITYV

12 INVAUDADDRESSV

13 STACKOVERFlOWV

14 STRINGPROTECTV

16 FAlSEASSERTV

17 SEQUENCEERRORV

continued

2-92 86000502-010

HISTORYREASON (cont.)

continued

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 4 (FAULTCAUSEV)

Integer Value Mnemonic Value

18 I NVALIDPCWV

19 STACKUNDERFLOWV

21 LlBLINKERRORV

22 I NVALIDINTV

23 MEMFAILlV

26 MEMORYFAIL2V

30 PROCINTERNALV

35 PROCDIEDV

37 BCLPOINTERV

40 DISKPARITYV

41 EMODEVIOLATIONV

42 NOACTIVELlNKV

43 PROCLlNKPARITYV

45 BOTTOM o FSTAC KV

46 RUNLIGHTOUTV

47 STACKSTRUCTUREV

48 BAD MSCWV

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 5 (SYSTEMCAUSEV)

86000502-010

Integer Value

1

2

3

4

8

9

Mnemonic Value

NOMEMV

PARITYONPBITV

ARRAYTOOLARGEV

INCOMPATIBLEWFUOBFILEV

(No mnemonic. The process was using an
object code file or a data file on a disk unit
that was closed by the CLOSE PK
< unit number> :DS form of the
CLOSE (Close Pack) system command.)

(No mnemonic. The MCP encountered an
error while handling software interrupts.)

2-93

HISTORYREASON (cont.)

2-94

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 6 (DCERRCAUSEV)

Integer Value

10

12

13

History Reason (No Mnemonic)

Message size error

Unknown file or station

File subtraction error

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 7 (I0ERRCAUSEV)

Integer Value

o

6

History Reason (No Mnemonic)

Either a train printer I/O error occurred
and could not be resolved, or else the
MCP procedure PATH RES did not not
successfully complete. PATH RES performs
functions such as loading disk controller
firmware.

Direct I{O attribute error

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 8 (SOFTIOERRCAUSEV)

Integer Value History Reason (No Mnemonic)

0 No error

1 Label parity error

2 Parity error on position

3 Invalid translation

4 Incompatible blocking

5 Illegal output reverse

6 Illegal input reverse

7 Short tape blocking

8 Illegal output file

9 No buffer space

10 No space in header

11 Duplicated file

12 Illegal direct Vo

14 Exceeded resources

15 No unit

16 Illegal optional file

17 Illegal final reel

18 Too many names

19 Failed entry

20 Illegal MYUSE value

continued

86000502-010

HISTORYREASON (cont.)

continued

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 8 (SOFTIOERRCAUSEV)

Integer Value History Reason (No Mnemonic)

21 Illegal NEWFILE value

22 DCOPEN failed

23 No write ring

24 Failed volume entry

25 Illegal unlabeled volume

26 Illegal BLOCKSTRUCTURE or FILETYPE

27 Illegal reel number

28 Find routines failed

29 Illegal backwa rd seek

30 Illegal read reverse

31 Illegal seek

32 Parity error on seek

33 Read on output file

34 Read on unopened file

35 Read reverse on unopened file

36 Seek on unopened file

37 Space forward on output file

38 Write on code file

39 Write on input file

40 Write on unopened file

41 Buffer in use

42 Up-level event

43 Security error

44 No room for buffer

45 Unknown error

46 Logic error

47 Already closed

48 No read before rewrite

49 No read before delete

50 Delete on non-I/O file

51 Illegal update file

52 Incompatible file organization

continued

86000502-010 2-95

HISTORYREASON (cont.)

continued

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 8 (SOFTIOERRCAUSEV)

Integer Value History Reason (No Mnemonic)

53 Close not called

54 File information block (FIB) stack
tra nsition error

55 Locking error

56 Kind list not allowed

57 Dialog communication failure with other
host

59 File not removed on disk

60 File not cataloged

61 Checkpoint file title not changed

62 Write user label error

63 RELEASEHEADER error

64 Tried to write beyond end of file (EOF)

65 Rewrite on non-I/O file

66 Logical/physical file mismatch

67 Seek on output file

68 Tape position error

69 Distributed systems service (DSS) cannot
handle this tile

70 Access restricted to APL

71 Open after close with lock

72 Illegal write random

73 Illegal read random

74 Not closed

75 Unexpected I/O error

78 Data error

79 Deleted/duplicate record

80 Parity error

81 I/O not done

82 Invalid subtile

83 Broadcast read error

84 Subtile is closed

85 No available buffer

86 No available message

continued

2-96 86000502-010

HISTORYREASON (cont.)

continued

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 8 (SOFTIOERRCAUSEV)

Integer Value History Reason (No Mnemonic)

87 Port not connected

88 End of file (EOF)

89 Illegal short block read

90 Break on output

91 Unit in rewind

92 Time limit exceeded

93 File not available

94 No file

95 Mismatched genealogy

96 Mismatched serial number

97 File not resident

98 Pack not present

99 Invalid access code

100 . Foreign file open error

101 Port offer error

102 Illegal hostname for foreign file

103 Data might have been lost

104 Record count error

105 Block count error

106 Host not reachable

107 Write lockout

108 FRAMESIZE and INTMODE values
incompatible

109 Binary VO not allowed

110 End of page

111 Bel not allowed on this machine

112 No continuation pack for audited file

113 Cannot be audit file

114 VO error occurred during flushing of
buffers

115 Too many backup files

116 Maximum audit length exceeded

117 Unable to position file at end

continued

86000502-010 2-97

HISTORYREASON (cont.)

continued

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 8 (SOFTIOERRCAUSEV)

Integer Value History Reason (No Mnemonic)

118 Unsupported function

119 Bad use of use routines

120 Must have usercode to use DSS

121 Invalid port name

122 Requires direct I/O

123 SB must contain a disk/pack unit

124 EIO logic error

125 Invalid array index

126 Incompatible I/O length

127 SIZEVISI BLE/FRAM ESIZE/I NTMODE value
conflict

128 I/O error occurred during closing of file

129 I/O support library error

130 I/O error

131 INQ_LlST allocation failed

132 End file not allowed

133 I/O error changing host control (He) unit
access mask register (AMR)

134 Unsupported protocol type

135 Protocol error

136 No resource to open port

137 YOURHOST is not in YOURHOSTGROUP

138 User is not an authorized user of the
application group

139 Support library unavailable

140 Error in one or more port-subfiles open
operations

141 Error in one or more port-subfiles close
operations

142 Incompatible attribute value or values

143 Function not available

144 Unacceptable character set

145 Networking not supported

continued

2-98 86000502-010

H ISTORYREASON (cont.)

continued

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 8 (SOFTIOERRCAUSEV)

Integer Value History Reason (No Mnemonic)

146 TRANSLATE=FORCESOFT not allowed
with binary I/O

147 I/O error clearing adapter or unit

148 Access restrictions not met

149 Cannot create restricted file

150 Security error on output tape open

151 Cannot write on guard file

152 Logical I/O not supported for this type of
unit

153 Attribute already set in physical file

154 FAMILYOWNER conflicts with task
usercode

155 Illegal I/O to coactive disk

156 Coactive unit not in output mode

157 Incompatible with this MCP version

158 DSS dialogue number too large for logical
I/O

159 VO error occurred during closing of file

160 Tape drive mode change operation failed

161 BYTES is not supported by this unit

162 Random add not allowed unless
delete-capable

163 Not delete-capable

164 Record has not been read

165 Beyond extend area

166 Record not locked

167 Record position occupied

168 Sequential write not permitted to EFS
direct file

170 Attempt to exceed family limit

171 Family integral limit exceeded

172 Attempt to exceed temporary file limit

174 Illegal write option specified

175 Invalid specification of ANYSIZEIO

continued

86000502-010 2-99

HISTORYREASON (cont.)

continued

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 8 (SOFTIOERRCAUSEV)

I nteger Value History Reason (No Mnemonic)

176 Area length exceeds maximum allowed

177 Logical file INTMODE incompatible with
permanent file FRAMESIZE

178 Incompatible FILESTRUCTURE

179 Permanent file FILESTRUCTURE must be
STREAM

180 Logical file MAXRECSIZE inconsistent with
permanent file MAXRECSIZE

181 Logical file BLOCKSIZE inconsistent with
permanent file BLOCKSIZE

182 MAXRECSIZE exceeds AREALENGTH

183 Logical file FRAMESIZE incompatible with
permanent file area length

184 Unsupported parameter for this service

185 Local interprocess communication (lPC)
not supported for this service

186 Unsupported translation for this service

187 DIOFILESTRUCTURE value requires
FILESTRUCTURE to be set

188 Not in proper state for direct I/O to unit
EIO

189 Cannot access a file of this FILEKIND

190 Open rejected by correspondent

191 Close rejected by correspondent

192 Endpoint not registered

193 Invalid respond option

194 Service invalid for provider

195 Provider restricted

196 Connect time limit exceeded

197 Correspondent does not support
APPLICATIONCONTEXT value

198 Correspondent rejected
DEFAULTPCONTEXT value

199 Invalid value or values for
DEFINEDPCONTEXTSET

200 Warning - DEFINEDPCONTEXTSET values
have changed

continued

2-100 86000502-010

HISTORYREASON (cont.)

continued

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 8 (SOFTIOERRCAUSEV)

I nteger Value History Reason (No Mnemonic)

201 Warning - port attribute ignored

202 Invalid associated data

203 Associated data too long

204 Invalid attribute values for respond

205 Invalid attribute values for AWAITOPEN

206 DEPENDENTSPECS must be TRUE when
DIOFILESTRUCTURE=SECTORSTREAM

207 Warning - initiator close collision

208 Warning-responder close collision

209 Endpoint incompatible with service

210 Unsupported primitive

211 Open failure in KEYEDIO library

212 Read reverse is not supported by this unit

213 Specified MAXRECSIZE is not supported
by this unit

214 MAXRECSIZE must equal BLOCKSIZE for
this unit

215 MCP does not support DMSII use of this
FILESTRUCTURE

216 Insufficient disk space

217 Operator entered OF (Optional File)
system command

218 KEYEDIOII write error occurred

219 Unmatched DIOFILESTRUCTURE value

220 Invalid connect TIMELIMIT value

221 Error encoding data

222 No data available to be read

223 Error on broadcast write

224 No buffer available for write

226 Open data was received

227 Open response data was received

228 Close request data was received

229 Close abort data was received

230 Close response data was received

continued

86000502-010 2-101

HISTORYREASON (cont.)

2-102

continued

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 8 (SOFTIOERRCAUSEV)

Integer Value

231

232

233

233

234

235

236

237

238

241

244

245

248

249

250 .

251

History Reason (No Mnemonic)

More data to come

Fault in use routine

Logical file MINRECSIZE inconsistent with
permanent file MINRECSIZE

Logical file MINRECSIZE inconsistent with
permanent file MINRECSIZE

BASICSERVICE violation

Action not valid in this FILESTATE

Transparent LOCALSYNTAX cannot be
supported for this subtile

Open aborted by correspondent

Open rejected - transient

Requested PROVIDERGROUP not defined

Write on read-only file

During a tile open, either the
CENTRALSUPPORT library could not be
accessed, or CENTRALSUPPORT reported
an error related to CCSVERSION
validation,INTMODE/EXTMODE
validation, or translation tables availability

Operation requires ownership of all
available tokens

Tape was changed while assigned

Word oriented access not supported for
KIND=CD

NETBIOS name in use

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 9 (NEWIOERRV)

Integer Value

20

37

38

39

History Reason (No Mnemonic)

Data error-no label

Remote backup disk error

Unknown station

Invalid set of attributes

86.000502-010

HISTORYREASON (cont.)

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 10 (UNIMPLEMENTEDCAUSEV)

Integer Value

1

Mnemonic Value

DYNAMICOWNARRAYV

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 13 (NETWORKCAUSEV)

Integer Value

1

5

12

Mnemonic Value

DISCON NECTEDV

HOSTNOTREACHABLEV

TASKPROTOCOLERRORV

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 14 (SOFTIOERR2CAUSEV)

86000502-010

Integer Value

o

1

2

3

4

5

6

7

8

9

10

11

History Reason (No Mnemonic)

WORM file still being written

Inappropriate attributes for WORM file

Inappropriate FILENAME for WORM file

Inappropriate MAXRECSIZE for protected
WORM file

File and directory name conflict on WORM

Too many WORM directory nodes

WORM directory node too big

Duplicate FILENAME on WORM

Security error creating WORM file

No room on WORM

Nonappend write to WORM file

Prior buffer write not at WORM sector
boundary

2-102A

HISTORYREASON (cont.)

2-1028

Examples

Suppose that the following task attributes have the values shown:

HISTORYTYPE = 4 (DSEDV)
HISTORYCAUSE = 4 (FAULTCAUSEV)
HISTORY REASON = 1

In this context, a mSTORYREASON of 1 means DIVIDEBYZEROV. In other words, the
process was discontinued because it attempted to divide by zero.

Now suppose that these task attributes have the following values:

HISTORYTYPE = 4 (DSEDV)
HISTORYCAUSE = 3 (RESOURCECAUSEV)
HISTORY REASON = 1

In this context, a mSTORYREASON of 1 means IOEXCEEDEDV. In other words,
the process was discontinued because it used more I/O time than was allowed by its
MAXIOTIME task attribute value.

86000502-010

HISTORYTYPE

H ISTORYTYPE
Type Mnemonic

Units Not applicable

Range See "Explanation" below

Default NORMALV

Read Time Anytime

Write Time Never

Inheritance None

Overwrite Rules None (read-only)

Host Services Supported

Attribute Number 66

Synonym None

Restrictions None

Explanation

The HISTORYTYPE indicates the type of termination that occurred for a process.
The HISTORYTYPE value is identical to field [07:08] of the HISTORY task attribute.
Possible values are as follows:

Mnemonic
Value

NORMALV

DUMPINGV

QTEDV

STEDV

DSEDV

NORMALEOTV

SYNTAXERRORV

UNKNOWNEOTV

DSEDINEPILOGV

86000502-000

Integer Value

0

1

2

3

4

5

6

7

8

Meaning

The process is still in-use or has not yet been
initiated.

The process is performing a program dump.

The process was a print request that was
terminated by an operator command.

The process is suspended.

The process was discontinued (terminated
abnormally).

The process terminated normally.

The process was a compilation that failed because
of syntax errors in the source program.

The process was terminated by an unknown cause
or by a cause related to job queues.

The process was a WFL job whose initiation failed
because the job attribute list included an invalid
task attribute assignment; or, the process has been
discontinued while executing an epilog procedure.

2-103

HOSTNAME

HOSTNAME

2-104

Type String

Units Not applicable

Range <simple name>

Default None

Read Time Anytime

Write Time Before initiation

Inheritance From parent

Overwrite Rules See below

Host Services Supported

Attribute Number 64

Synonym None

Restrictions None

Explanation

The HOSTNAME task attribute specifies the host system on which the process runs.
If HOSTNAME is specified before initiation, the object code file is searched for and
initiated on the requested host. If HOSTNAME is read after initiation, it returns the
name of the host where the process is running.

For general information about initiating and controlling tasks on remote host systems,
refer to the discussion of tasking across multihost networks in the A Series Task
Management Programming Guide.

Overwrite Rules

Standard overwrite rilles apply, except that HOSTNAME task attribute assignments
should not be made to an object code file. If HOSTNAME is assigned to an object code
file, the process is immediately discontinued as soon as it is initiated.

Run-Time Errors

HOSTNAME ATTRIBUTE INCORRECT SYNTAX

An attempt was made to assign HOSTNAME a value that did not follow the simple name
syntax. The assigning process, if nonprivileged, is discontinued with mSTORYCAUSE
= 2 (PROGRAMCAUSEV) and HISTORYREASON = 131 (INCORRECTSYNTAXV).

HOSTNAME ATTRIBUTE IS READONLY ON ACTIVE TASK

An attempt was made to assign a HOSTNAME value to an in-use process. The
assigning process, if nonprivileged, is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) and HISTORYREASON = 33 (READONLYONACTIVEV).

86000502-000

HOSTNAME (cont.)

ILLEGAL HOST-TO-HOST TRANSFER OF TASK

An attempt was made to initiate a process with a compiled-in HOSTNAME task
attribute value. The initiating process is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) and HISTORYREASON = 31 (ILLEGALTASKXFERV).

86000502-000 2-105

HSPARAMSIZE

HSPARAMSIZE

2-106

Type Integer

Units See below

Range -65535 to +65535

Default 0

Read Anytime

Write Time Never

Inheritance None

Overwrite Rules None (read-only)

Host Services Not supported

Attribute Number 70

Synonym None

Restrictions None

Explanation

The HSP ARAMSIZE task attribute records the total length of the parameters passed to
this process. This attribute is mainly intended for use by the system software, but can
also be read by application programs.

Units

If the value of HSP ARAMSIZE is less than 0, the length is expressed in words. If the
value of HSP ARAMSIZE is greater than 0, the length is expressed in bytes.

8600 0502-000

INHERITMCSSTATUS

INHERITMCSSTATUS
Type Boolean

Units Not applicable

Range TRUE, FALSE

Default See below

Read Time ' See below

Write Time See below

Inheritance None

Overwrite Rules See below

Host Services Not supported

Attribute Number 92

Synonym None

Restrictions Not available in WFL

Explanation

The INHERITMCSSTATUS task attribute, if TRUE, enables a process to inherit the
privileges and priority category of an MCS.

If the initiating process is not an MCS, then the INHERITMCSSTATUS task attribute
has no effect.

Note: Although tasking programs h(J1Je many of the same privileges as an
MCS, the INHERITMCSSTATUS task attribute cannot be used to
cause tasking status to be inherited.

For a discussion of MCS privileges and tasking status, refer to the A Series Task
Management Programming Guide.

Default

INHERITMCSSTATUS defaults to FALSE for most processes. However, the
INHERITMCSSTATUS task attribute defaults to TRUE for internal processes initiated
by an MCS.

86000502-010 2-107

INHERITMCSSTATUS (cont.)

2-108

Read Time, Write Time, and Overwrite Rules

The INHERITMCSSTATUS of a task variable can be read or written at any time, but
only by the following types of programs:

• Host Services system software

• Libraries with a nonzero linkage class

• Programs marked with one or more of the following types of security status:
compiler status, MCS status, privileged status, or tasking status. (Note that it is the
object code file, rather than the process usercode, that must have the special security
status.)

For information about linkage classes and about the various types of security status,
refer to the A Series Task Management Programming Guide.

Although you can assign INHERITMCSSTATUS to object code files, such assignments
are ignored when the program is initiated.

Similarly, although you can assign INHERITMCSSTATUS through task equations in
CANDE and MARC, such assignments have no effect. INHERITMCSSTATUS task
equations in WFL result in the run-time error or warning "INHERITMCSSTATUS
ATTRffiUTE - RESTRICTED ACCESS", which is described later under this heading.

Run-Time Error

INHERITMCSSTATUS ATIRIBUTE - RESTRICTED ACCESS

A program lacking the necessary code file privileges attempted to access the
INHERITMCSSTATUS task attribute. The accessing process, ifnonprivileged,
is discontinued with mSTORYCAUSE = 2 (PROGRAMCAUSEV) and
mSTORYREASON = 128 (RESTRICTEDACCESSV).

86000502--010

INITPBITCOUNT

INITPBITCOUNT
Type Real

Units Presence-bit operations

Range o to about 4.31 E68

Default 0

Read Time Anytime

Write Time Never

In~eritance None

Overwrite Rules None (read-only)

Host Services Not supported

Attribute Number 104

Synonym None

Restrictions None

Explanation

The INITPBITCOUNT task attribute returns the number of initial presence-bit
operations that have been performed for the process since its initiation.

For information about initial presence-bit operations, refer to the discussion of
controlling process memory usage in the A Senes Task Management Programming
Guide.

86000502-010 2-108A

INITPBITCOUNT (cont.)

2-1088 86000502-010

INITPBITTIME

INITPBITTIME
Type Real

Units See below

Range o to about 4.31 E68

Default 0

Read Time Anytime

Write Time Never

Inheritance None

Overwrite Rules None (read-only)

Host Services Not su pported

Attribute Number 105

Synonym None

Restrictions None

Explanation

The INITPBITTIME task attribute returns the total time spent processing initial
presence-bit operations for this process.

For information about initial presence-bit operations, refer to the discussion of
controlling process memory usage in the A Series Task Management Programming
Guide.

Units

In WFL, this value is returned in units of seconds. In all other languages, this value is
returned in units of 2.4 microseconds.

86000502-000 2-109

ITINERARY

ITINERARY

2-110

Type String

Units Not applicable

Range <hostname list>

Default Null string

Read Time Anytime

Write Time Never

Inheritance See below

Overwrite Rules None (read-only)

Host Services Supported

Attribute Number 72

Synonym None

Restrictions None

Range

<hostname list>

~<simple'n~~--------------------------------------~

Explanation

The ITINERARY task attribute contains a record of the remote hosts where ancestors of
this process were initiated. The leftmost entry in the string is the hostname of the most
recent remote ancestor of the process. The next entry in the string is the hostname of
the host where the next most recent remote ancestor was initiated, and so forth.

The default value of null indicates that the process has no remote ancestors.

Inheritance

This attribute is inherited verbatim from parent to offspring when the parent and
offspring are running on the same host. When the parent and offspring are on different
hosts, the offspring inherits the parent's ITINERARY value with an added entry at the
left that records the host where the parent is running.

8600 0502-000

ITINERARY (cont.)

Examples

The contents of the ITINERARY attribute for four related processes are shown in the
following table:

Process

A

B

C

D

ITINERARY Value of Process

"BLUE."

"BLUE."

"YELLOW, BLUE."

The relationship of the processes is as follows:

• Job A starts on host BLUE.

• Job A initiates task B on host YELLOW.

• Task B initiates task C on host YELLOW.

• Task C initiates task D on host RED. Note that RED does not appear in the
ITINERARY value for D because the ITINERARY reflects only the ancestors of D.

86000502-000 2-111

JOBNUMBER

JOBNUMBER

2-112

Type Integer

Units Not applicable

Range o to 9999

Default See below

Read Time Anytime

Write Time See below

Inheritance See below

Overwrite rules Object code file dominant

Host Services Supported

Attribute Number 41

Synonym None

Restrictions None

Explanation

For a task, the JOBNUMBER task attribute records the mix number of the job that
owns the task. For ajob, the JOBNUMBER task attribute value records thejob's own
mix number. The mix number is a number that uniquely identifies a process and which
the system assigns to the process at initiation. A process can read the mix number by
using the MIXNUMBER task attribute.

For further information about mix numbers and relationships between jobs and tasks,
refer to the A Series Task Management Programming Guide.

Default and Inheritance

The JOBNUMBER value is 0 before initiation. At initiation, ajob is automatically
assigned a JOBNUMBER value by the system. When you initiate a task from a MARC
or CANDE session, the task receives a JOBNUMBER value equal to the session number.
All other tasks inherit the JOBNUMBER value of their parents.

Write Time

Only an MCS or other system software can assign the JOBNUMBER value.

Run-Time Errors

The following errors are fatal unless the accessing process is privileged.

JOBNUMBER ATTRIBUTE INCORRECT SYNTAX

An attempt was made to assign JOBNUMBER a value less than 0 or greater than 9999.
The assigning process, if nonprivileged, is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) and HISTORYREASON = 131 (INCORRECTSYNTAXV).

86000502-000

JOBNUMBER (cont.)

JOBNUMBER ATTRIBUTE INCORRECT SYNTAX

An attempt was made to assign JOBNUMBER a value less than 0 or greater than 9999.
The assigning process,ifnonprivileged, is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) and mSTORYREASON = 131 (INCORRECTSYNTAXV).

JOBNUMBER ATTRI BUTE IS READONLY ON ACTIVE TASK

An attempt was made to assign a JOBNUMBER value to an in-use process. The
accessing process, if nonprivileged, is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) and mSTORYREASON = 33 (R,EADONLYONACTNEV).

JOBNUMBER ATTRIBUTE MAY ONLY BE SET BY AN MCS OR TASKING PROGRAM

A process that was not an MCS or tasking program attempted to assign a value
to JOBNUMBER. The assigning process, if nonprivileged, is discontinued with
mSTORYCAUSE = 2 (PROGRAMCAUSEV) and mSTORYREASON = 54
(ONLYMCSTASKINGV).

JOB NUMBER IS NOT A SESSIONNUMBER

An attempt was made to assign JOBNUMBER a value that was not a session number.
The assigning process, if nonprivileged, is discontinued with mSTORYCAUSE = 2
(PROGRAMCAUSEV) and mSTORYREASON = 11 (NOTSESSIONNUMBERV).

86000502-010 2-113

JOBSUMMARY

JOBSUMMARY
Type Mnemonic

Units Not applicable

Range See "Explanation" below

Default DEFAULT

Read Time Anytime

Write Time Anytime

Inheritance None

Overwrite Rules Standard

Host Services Supported

Attribute Number 81

Synonym None

Restrictions None

Explanation

The JOBSUMMARY task attribute of a job determines whether the job produces ajob
summary printout. The following are the possible values and their meanings:

Mnemonic Value Integer Value

DEFAULT o

CONDITIONAL 1

2-114

Meaning

If the NOSUMMARY option of the OPTION
task attribute is set, then the effects are
the same as if JOBSUMMARY had a value
of CONDITIONAL. If NOSUMMARY is not
set, job summary printing is controlled by
the JOBSUMMARYoption of the PS
DEFAULT system command. This PS
DEFAULT JOBSUMMARYoption can
specify a value of CONDITIONAL,
SUPPRESSED, UNCONDITIONAL,-or
ABORTONLY. These values have the same
effects as the corresponding
JOBSUMMARY task attribute values.

The job summary is printed only if one of
the following conditions occur: backup
files are produced, the job terminates
abnormally, or a descendant compilation
encounters a syntax error.

continued

86000502-010

continued

Mnemonic Value Integer Value

SUPPRESSED 2

UNCONDITIONAL 3

ABORTONLY 4

JOBSUMMARY (cant.)

Meaning

The job summary is suppressed, except in
the following circumstances:

• The job is submitted from an COT
and has WFL syntax errors.

• The job is discontinued because of a
job queue conflict, such as requesting
a nonexistent job queue, or specifying
job attributes that conflict with job
queue attributes.

Any backup files associated with the job
are printed, regardless of whether the job
summary prints or not.

The job summary is printed, regardless of
how the job terminates or whether there
are backup files.

The job summary is printed only if the job
or one of its descendants terminates
abnormally.

The JOBSuMMARY value is not used until the job terminates. If JOBSUMMARY
is assigned more than once for an in-use job, only the last assignment before job
termination has effect.

When a task initiated through a CANDE or MARC RUN command attempts to access its
own JOBSUMMARY value, the system actually accesses the JOBSUMMARY value for
the session. In other words, for a task initiated by the RUN command from a session,
MYSELEJOBSUMMARY is interpreted as MYJOB.JOBSUMMARY. Any assignments
made by the offspring actually affect the job summary for the session.

Similarly, for WFL statements submitted through a CANDE or MARC WFL command,
MYJOB(JOBSUMMARY) affects the job summary of the session. However, in such
WFL statements, MYSELF(JOBSUMMARY) has no effect on the job summary of the
session.

In MARC, you can also assign the JOBSUMMARY value for a session by using the
MARC JOBSUMMARY command.

A task initiated from ajob can read or modify its own JOBSUMMARY value. However,
for a task, the JOBSUMMARY value has no effect, because a task has no job summary.
The JOBSUMMARY value of the task's job determines whether ajob summary is
produced.

86000502-010 2-115

JOBSUMMARY (cont.)

2-116

Run-Time Error

JOBSUMMARY ATIRIBUTE INCORRECT SYNTAX

An attempt was made to set JOBSUMMARY to a value less than 0 or greater than 3.
The assigning process, if nonprivileged, is discontinued with mSTORYCAUSE = 2
(PROGRAMCAUSEV) and HISTORYREASON = 131 ONCORRECTSYNTAXV).

86000502-010

JOBSUMMARYTITLE

JOBSUMMARYTITLE
Type String

Units Not applicable

Range <title>

Default Null string

Read Time Anytime

Write Time Anytime

Inheritance None

OVerwrite Rules Standard

Host Services Not supported

Attribute Number 97

Synonym None

Restrictions None

Explanation

The JOBSUMMARYTITLE task attribute specifies a title under which the job summary
file should be saved.

If JOBSUMMARYTITLE is null when the job terminates, then ajob summary file is
created only if ajob summary is to be printed The job summary file is titled according to
default conventions and is removed immediately after printing.

If the JOBSUMMARYTITLE value has a nonnull value when the job terminates,
then the system creates a permanent job summary file with the value of
JOBSUMMARYTITLE as its title. The job summary file is created even if no job
summary is to be printed. However, even if ajob summary is printed, the job summary
file is preserved for possible later use.

If the JOBSUMMARYTITLE value includes an ON <family name> part, then the
file is created on the specified family. Otherwise, the location of the job summary file is
determined by the rules discussed for printer backup file media in the A Series Task
Management Programming Guide.

If a statement assigns JOBSUMMARYTITLE a value that does not include a usercode,
then the system automatically prefixes the new JOBSUMMARYTITLE value with the
usercode under which the job was initiated.

Note: If the usercode of the job changes after initiation, and the job then
assigns JOBSUMMARYTITLE a value that does not include a
usercode, the system prefixes JOBSUMMARYTITLE with the
original usercode of the job. If you want the job summary file to be
created under the new usercode of the job, you must explicitly specify
the desired usercode in the JOBSUMMARYTITLE assignment.

86000502-010 2-117

JOBSUMMARYTITLE (cont.)

2-118

Only a privileged process can assign JOBSUMMARYTITLE a usercode different
from the usercode of the process. If a nonprivileged process assigns a usercode to
JOBSUMMARYTITLE, the usercode must match the usercode of the process and the
usercode of the job of the process. A nonprivileged process running without a usercode
carmot assign a usercode to JOBSUMMARYTITLE.

The JOBSUMMARYTITLE attribute has meaning only for jobs. Whenever a task reads
its own JOBSUMMARYTITLE value, a null value is returned. If a task assigns a value
to its JOBSUMMARYTITLE value, then no error results but the value remains null.

When a task initiated from a CANDE or MARC session attempts to access its own
JOBSUMMARYTITLE value, the system actually accesses the JOBSUMMARYTITLE
value for the session. In other words, for a task initiated from a session,
:M.YSELRJOBSUMMARYTITLE is interpreted as :M.YJOB.JOBSUMMARYTITLE. Any
assignments made by the offspring actually affect the job summary for the session. In
MARC, you can also assign the JOBSUMMARYTITLE for a session by using the MARC
JOBSUMMARYTITLE command.

The JOBSUMMARYTITLE value has no effect on the printing of the job summary. For
information about controlling job summary printing, and general information about job
summaries, refer to the A Series Task Management Programming Guide.

86000502-010

JOBSUMMARYTITLE (cont.)

Run-Time Errors

JOBSUMMARYTITLE TASK ATTRIBUTE INCORRECT SYNTAX

A process attempted to assign JOBSUMMARYTITLE a value that does not conform
to the syntax of a title. The assigning process, if nonprivileged, is discontinued with
mSTORYCAUSE = 2 (PROGRAMCAUSEV) and HISTORYREASON = 131
UNCORRECTSYNT~.

SECURITY VIOLATION

A nonprivileged process attempted to assign JOBSUMMARYTITLE a usercode
that is not allowed for that process. The assigning process is discontinued with
mSTORYCAUSE = 2 (PROGRAMCAUSEV) and HISTORYREASON = 29
(SECURITYERRORV). The message "INVALID TASK ATTRIBUTE:
JOBSUMMARYTITLE" is written in the log.

TASK ATTRIBUTE ACCESS FAULT

A disk error resulted from an attempt to read or assign the JOBSUMMARYTITLE
of a process. The reading or assigning process, if nonprivileged, is discontinued with
mSTORYCAUSE = 2 (PROGRAMCAUSEV) and HISTORYREASON = 132
(ATrACCESSFAULTV).

8600 0502-010 2-118A

LANGUAGE

LANGUAGE

2-1188

Type String

Units Not applicable

Range <language identifier>

Default See below

Read Time Anytime

Write Time Anytime

Inheritance See below

Overwrite Rules Standard

Host Services Supported

Attribute Number 95

Synonym None

Restrictions None

Range

<language identifier>

-<uppercase letter>

~/16\-,-<u~p~rcase letter>=y=LJ
L<d1 91 t» -------'

Explanation

The LANGUAGE task attribute is used by the MultiLingual System (MLS) to determine
the language of output messages for a process. The LANGUAGE value affects all
messages displayed for the process by the system, including BO~ EO~ and RSVP
messages. The LANGUAGE value also establishes a default language to be applied to
any MESSAGESEARCHER statements executed by ALGOL programs.

You should be especially careful not to misspell the LANGUAGE value, because the
system does not notify you of any spelling errors. The system accepts any combination of
letters and digits that conforms to the language identifier syntax. If the LANGUAGE
value does not correspond to any language that is available on the system, the process
messages are displayed in the system default language.

Refer to the A Series MultiLingual System (MLS) Administration, Operations, and
Programming Guide for information about MLS.

Default and Inheritance

A process inherits the LANGUAGE value of its parent.

86000502-010

LANGUAGE (cont.)

The default value of LANGUAGE is ENGLISH. A different default can be established
for the whole system by using the LANGUAGE option of the SYSOPS (System Options)
system command.

The system administrator can associate a language with a usercode by including a
LANGUAGE usercode attribute in the usercode definition in the USERDATAFILE. This
language value does not directly affect processes, but it is inherited by MARC or CANDE
sessions with that usercode. You can also change the language of a session after log-on
by using the MARCor CANDE LANGUAGE command. Processes initiated from the
session inherit the current language of the session.

The LANGUAGE attribute of a usercode is also inherited by WFLjobs that are assigned
that usercode in the job attribute list.

Run-Time Errors

LANGUAGE ATTRIBUTE INCORRECT SYNTAX

An attempt was made to assign a LANGUAGE value that did not conform to the
language identifier syntax. The assigning process, if nonprivileged, is discontinued
with HISTORYCAUSE = 2 (PROGRAMCAUSEV) and HISTORYREASON = 131
(INCORRECTSYNTAXV).

TOO MANY LANGUAGES IN USE BY SYSTEM

An attempt was made to assign a language value that would bring the total number
of languages in use on the system to greater than 256. The assigning process, if
nonprivileged, is discontinued with HISTORYCAUSE = 2 (PROGRAMCAUSEV) and
HISTORYREASON = 99 (FOREIGNTASKINITFAILV).

86000502-000 2-119

LIBRARY

LIBRARY

2-120

Type String

Units Not applicable

Range <library equation>

Default Null string

Read Time See below

Write Time Before initiation

Inheritance See below

Overwrite Rules See below

Host Services Not supported

Attribute Number 74

Synonym None

Restrictions None

Range

< library equation>

--.L LIBRARY -<internal name>-<; ibrary attribute assignment>:>--'-----I

< internal name>

< simple name>

< library attribute assignment>

- (~<library attribute>-- = --~library attribute value>=!-) ------1

< library attribute>
<attribute value>

For a list of possible library attributes and their values, refer to the A Series Task
Management Programming Guide.

Explanation

The LIBRARY task attribute assigns library attributes to a library used by the process.
The LIBRARY task attribute overrides any conflicting assignments in the library
declaration.

One typical use of this attribute is to cause a user process to call on a different library
than it otherwise would. The library to be used can be specified through assignments
to the LIBACCESS, FUNCTIONNAME, and TITLE library attributes. Another
use of the LIBRARY task attribute is to pass a parameter to the library through the
LIBP ARAMETER library attribute.

8600 0502-000

LI BRARY (cont.)

The internal name specified in the LIBRARY value should equal the value of the
INTNAME library attribute. This library attribute can be assigned by the user process.
If not assigned, this library attribute defaults to the name of the identifier used in the
library declaration.

Read Time

The LIBRARY task attribute can be read at any time from ALGOL. However, the value
returned is encoded in an internal form that does not resemble the original LIBRARY
assignments. The LIBRARY task attribute returns a null value if read from COBOL74
and cannot be read from WFL at all.

Inheritance

Internal processes inherit the LIBRARY value of the parent.

Overwrite Rules

In ALGOL or COBOL 74, if the LIBRARY attribute of a task variable is assigned more
than once, each assignment is merged with the previous value of the LIBRARY attribute.
A library attribute assignment in the existing value is overwritten only in the following
cases:

• If the new assignment specifies a different value for the same attribute of the same
library.

• If a null string is assigned to LIBRARY. In this case, the LIBRARY value is restored
to null.

In WFL, a LIBRARY assignment is merged with the existing LIBRARY value if the
assignment includes an asterisk or if the library internal name is a string primary. If no
asterisk is included, and the library internal name is a name constant, then the previous
LIBRARY value is discarded.

When a process is initiated, the LIBRARY values assigned through assignments to the
task variable, object code file assignments, and inheritance from the parent are merged
together into a single LIBRARY value. If these sources assign conflicting values to the
same library attribute of the same library, then standard overwrite rules determine
which library attribute assignment takes precedence.

Examples

The following is an example of a LIBRARY assignment in CANDE and in WFL:

8600 0502-000

RUN OBJECT/DAILY/UPDATE;
LIBRARY UPDATER (LIBACCESS=BYTITLE, TITLE=OBJECT/UPDATE/MODS);
LIBRARY GENROUTINES (TITLE=OBJECT/GENROUTINES/TESTVERSION);

2-121

LIBRARY (cont.)

2-122

The following is an example of a LIBRARY assignment in ALGOL:

REPLACE T.LIBRARY BY
II LIBRARY L (LIBACCESS = BYFUNCTION, FUNCTIONNAME=MYSUPPORT) ; II
"LIBRARY GENR'OUTINES (TITLE=OBJECT /GENROUTINES/TEST) ; II 48"00 11

;

The following ALGOL statement resets the LIBRARY value to a null string:

REPLACE T. LIBRARY BY 48 11 00 11
;

The following COBOL74 statements assign attributes to two libraries. Both assignments
are made to the same task variable, TASK-VAR-I. The second assignment does not
overwrite the first assignment, but rather is merged with it:

CHANGE ATTRIBUTE LIBRARY OF TASK-VAR-l TO
II LIBRARY L (LIBACCESS=BYFUNCTION, FUNCTIONNAME=IIIIMYSUPPORTIIII) ; ".

CHANGE ATTRIBUTE LIBRARY OF TASK-VAR-l TO
II LIBRARY UPDATER (LIBACCESS = BYFUNCTION);".

Run-Time Errors

LIBRARY ATTRIBUTE IS READONLY ON ACTIVE TASK

An attempt was made to assign the LIBRARY value of an in-use process. The
assigning process, if nonprivileged, is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) andHISTORYREASON = 33 (READONLYONACTIVEV).

LIBRARY ATTRIBUTE INCORRECT SYNTAX

There were one or more syntax errors in the library attribute assignments in the
LIBRARY value. The assigning process, if nonprivileged, is discontinued with
HISTORYCAUSE = 2 (PROGRAMCAUSEV) and HISTORYREASON = 131
(INCORRECTSYNTAXV).

86000502-000

LIBRARVSTATE

LIBRARYSTATE
Type Real

Units Not applicable

Range See "Explanation" below

Default 0

Read Time Anytime

Write Time Never

Inheritance None

Overwrite Rules None (read-only)

Host Services Not supported

Attribute Number 108

Synonym None

Restrictions None

Explanation

The LIBRARYSTATE task attribute records whether a process is a library. If the
process is a frozen library, or if it was initiated by the library linkage mechanism and
has not yet frozen, then bit [0:1] of the LIBRARYSTATE value is set to 1. (The library
linkage mechanism initiates a library program if a user process attempts to import an
object from that library and an instance of the library does not already exist.) If the
process is not frozen and was not initiated by the library linkage mechanism, then bit
[0:1] of the LIBRARYSTATE value is set to O.

This task attribute can be useful for programs that are designed to run in either
of two ways, as an ordinary process or a library process. The process can read the
LIBRARYSTATE value to determine if it was initiated by the library mechanism; if so,
the process can execute a FREEZE statement and become a frozen library process. If
the process was not initiated by the library linkage mechanism, it can skip the FREEZE
statement and take other actions.

Example

An ALGOL program can use a statement such as the following to determine if it was
invoked as a library and take appropriate action:

IF BOOLEAN(MYSELF.LIBRARYSTATE)
THEN FREEZE(TEMPORARY)
ELSE NONLIBACTOR;

This IF statement freezes the process if it waS invoked as a library. Otherwise, it calls a
procedure named NONLIBACTOR, which is declared elsewhere in the program.

86000502-000 2-123

LIBRARYUSERS

LIBRARYUSERS

2-124

Type Integer

Units User processes

Range See below

Default 0

Read Time Anytime

Write Time Never

Inheritance None

Overwrite Rules None (read-only)

Host Services Not supported

Attribute Number 101

Synonym None

Restrictions None

Explanation

For library processes, the LIBRARYUSERS task attribute returns the number of user
processes that are currently linked to the library.

When the LIBRARYUSERS value of a permanent library or control library changes to
zero, the system causes the exception event of that library.

If LIBRARYUSERS is read for a process that is not a library, it returns a zero.

Range

The value of LIBRARYUSERS is limited to the number of processes that a given system
is capable of running. This number is anywhere from about 1000 for a B 5900 system to
about 4000 for an A 15 system.

86000502-000

LOCKED

LOCKED
Type Boolean

Units Not a ppl ica ble

Range TRUE, FALSE

Default FALSE

Read Time Anytime

Write Time Anytime

Inheritance None

Host Services Not supported

Attribute Number 17

Synonym None

Restrictions Not available in APLB

Explanation

The LOCKED task attribute provides a means to regulate the timing of two or more
processes that access a shared object. ~

If LOCKED has a value of FALSE, then any process can change the value to TRUE
and continue normally. However, if LOCKED has a value of TRUE, then any process
that attempts to set LOCKED to TRUE stops executing until some other process sets
the value of LOCKED to FALSE. If more than one process is waiting to set LOCKED
to TRUE, then when another process sets LOCKED to FALSE, one of the waiting
processes sets LOCKED back to TRUE and resumes execution. The programmer cannot
predict which of the waiting processes resumes execution first. However, the highest
priority process has the best chance. The other waiting processes continue to wait until
the next time a process sets LOCKED to FALSE.

Implicitly, the LOCKED attribute functions by accessing the available state of a
predeclared event. This attribute is used mainly in WFL jobs because they cannot
access events directly. For a detailed discussion of events, refer to the A Series Task
Management Programming Guide.

86000502-000 2-125

MAXCARDS

MAXCARDS

2-126 .

Type Integer

Units Punch cards

Range o to 549755813887

Default o (unlimited)

Read Time Anytime

Write Time Anytime

Inheritance See below

Overwrite Rules See below

Host Services Supported

Attribute Number 39

Synonym PUNCHLIMIT

Restrictions None

Explanation

The MAXCARDS task attribute specifies the maximum number of cards that can be
punched by a process and its descendants. If a process and its descendants attempt to
punch more cards than are allowed by this attribute, the process is discontinued.

The system uses two different but complementary methods to keep track of the number
of cards that have been punched by a parent process and its descendants:

• For each process, the system maintains a punch count that records the total number
of cards that have been punched for all the punch files declared by that process.
(This punch count is stored internally and is not visible to the user.) The system
updates this punch count whenever the process or any of its descendants writes to a
punch file declared by the process. The system discontinues the process if the pWlch
count reaches a greater value than MAXCARDS.

• If a task declares a punch file, and writes to it, the system does not update the pWlch
count for the parent of the task. However, when the task terminates, the system
subtracts the task's punch count from the parent's MAXCARDS value and updates
the parent's MAXCARDS value accordingly. The system discontinues the parent if
the new MAXCARDS value is lower than the parent's punch count.

Range

If a value less than 0 is assigned, the value is changed to O. If a value greater than the
maximum value is assigned, the value is changed to the maximum value, 549755813887.

"

Inheritance

A process inherits its parent's MAXCARDS value if the parent's MAXCARDS value is
not unlimited.

86000502-000

MAXCARDS (cont.)

If a job queue has a default value for the CARDS queue attribute, then that value is
inherited by the MAXCARDS task attribute of WFL jobs run from that queue.

If a job queue has a limit value for the CARDS queue attribute, then WFL jobs that
specify a higher MAXCARDS value in the job attribute list cannot be accepted into that
job queue.

Overwrite Rules

Standard overwrite rules apply, with the following exceptions:

• When a task is initiated, the MAXCARDS value is the minimum of the value
inherited from the parent and any value resulting from standard overwrite rules.

• For MAXCARDS assignments to an in-use process, the maximum value that can
result is the job's current MAXCARDS value, minus the number of cards the in-use
process has already punched. Attempts to assign a higher value result in this
maximum value being assigned. No error or warning is issued.

Run-Time Error

PUNCH LIMIT EXCEEDED

The process attempted to punch more cards than were allowed by the MAXCARDS
value. The process is discontinued with HISTORYCAUSE = 3 (RESOURCECAUSEV)
and HISTORYREASON = 4 (PUNCHEXCEEDEDV).

86000502-000 2-127

MAXIOTIME

MAXIOTIME

2-128

Explanation

Type

Units

Range

Default

Read Time

Write Time

Inheritance

Overwrite Rules

Host Services

Attribute Number

Synonym

Restrictions

Real

Seconds

o through 1319412.9 (15 days, 6 hours,
30 minutes, 12.9 seconds)

o (unlimited)

Anytime

Anytime

See below

See below

Supported

5

IOTIME

None

The MAXIOTIME task attribute specifies the maximum amount of I/O time that a
process can use. When the ACCUMIOTIME task attribute reaches the same value as
the MAXIOTIME task attribute, the process is discontinued.

When a task terminates, the system decrements the MAXIOTIME value of the task's
parent by the amount of I/O time recorded by the ACCUMIOTIME attribute of the task.
Refer to the ACCUMIOTIME description in this section for details.

Inheritance

A process inherits the MAXIOTIME value of its parent.

If ajob queue has a default value for the IOTIME queue attribute, then that value is
inherited by the MAXIOTIME task attribute ofWFLjobs run from that queue.

Ifajob queue has a limit value for the IOTIME queue attribute, then WFLjobs that
specify a higher MAXIOTIME value in the job attribute list cannot be accepted into that
job queue.

86000502-000

MAXIOTIME (cont.)

Overwrite Rules

Standard overwrite rules apply, with the following exceptions:

• When a task is initiated, the MAXIOTIME value is the minimum of the value
inherited from the parent and any value resulting from standard overwrite rules.

• For MAXIOTIME assignments to an in-use process, the maximum value that can
result is the job's current MAXIOTIME value, minus the amount of I/O time the
process has already used. Attempts to assign a higher value result in this maximum
value being assigned. No error or warning is issued.

Run-Time Errors

EXC I/O TIME

The process used more I/O time than is allowed by the MAXIOTIME task attribute.
The process is discontinued with HISTORYCAUSE = 3 (RESOURCECAUSEV) and
HISTORYREASON = 1 (IOEXCEEDEDV).

TASK ATTRIBUTE ACCESS FAULT

An attempt was made to assign MAXIOTIME a value greater than its maximum value.
The assigning process, if nonprivileged, is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) and HISTORYREASON = 39 (INFANTICIDEV).

86000502-000 2-129

MAXLINES

MAXLINES

2-130

Type Integer

Units Lines printed

Range o to 274877906943

Default o (unlimited)

Read Time Anytime

Write Time Anytime

Inheritance See below

Overwrite Rules See below

Host Services Supported

Attribute Number 40

Synonym PRINTLIMIT

Restrictions None

Explanation

The MAXLINES task attribute specifies the maximum number of lines that can be
printed by a process and its descendants. If a process and its descendants attempt to
print more lines than are allowed by this attribute, the process is discontinued.

The system uses two different, complementary methods.to keep track of the number of
lines that have been printed by a parent process and its descendants.

1. For each process, the system maintains a print count that records the total number
of lines that have been printed for all the printer files declared by that process.
(This print count is stored internally and is not visible to the user.) The system
updates this print count whenever the process or any of its descendants writes to a
print file declared by the process. The system discontinues the process if the print
count reaches a value greater than MAXLINES.

2. If a task declares a print file and then writes to it, the system does not update the
print count for the parent of the task. However, when the task terminates, the
system subtracts the task's print count from the parent's MAXLINES value and
updates the parent's MAXLINES value accordingly. The system discontinues the
parent if the new MAXLINES value is lower than the parent's print count.

Range

If a value less than 0 is assigned, the value is changed to O. If a value greater than
274877906943 is assigned, the value is changed to 274877906943.

Inheritance

A process inherits its parent's MAXLINES value if the parent's MAXLINES value is not
unlimited.

86000502-000

MAXLINES (cont.)

If ajob queue has a default value for the LINES queue attribute, then that value is
inherited by the MAXLINES task attribute of WFL jobs run from that queue.

Ifajob queue has a limit value for the LINES queue attribute, then WFLjobs that
specify a higher MAXLINES value in the job attribute list cannot be accepted into that
job queue.

Overwrite Rules

Standard overwrite rules apply, with the following exceptions:

• When a task is initiated, the MAXLINES value is the minimum of the value
inherited from the parent and any value resulting from standard overwrite rules.

• For MAXLINES assignments to an in-use process, the maximum value that can
result is the job's current MAXLINES value, minus the number of lines the in-use
process has already written. Attempts to assign a higher value result in this
maximum value being assigned. No error or warning is issued.

Run-Time Error

PRINT LIMIT EXCEEDED

The process attempted to print more lines than were allowed by the MAXLINES value.
The process is discontinued with HISTORYCAUSE = 3 (RESOURCECAUSEV) and
HISTORYREASON = 3 (PRINTEXCEEDEDV).

86000502-000 2-131

MAXPROCTIME

MAXPROCTIME

2-132

Explanation

Type

Units

Range

Default

Read Time

Write Time

Inheritance

Overwrite Rules

Host Services

Attribute Number

Synonym

Restrictions

Real

Seconds

o through 1319412.9 (15 days, 6 hours, 30
minutes, 12.9 seconds)

o (unlimited)

Anytime

Anytime

See below

See below

Supported

4

None

None

The MAXPROCTIME task attribute specifies the maximum amount of processor time
that can be used by a process. If the ACCUMPROCTIME task attribute value reaches
the same value as MAXPROCTIME, the process is discontinued.

When a task terminates, the system decrements the MAXPROCTIME value of the
task's parent by the amount of processor time recorded by the ACCUMPROCTIME
attribute of the task. Refer to the ACCUMPROCTIME description in this section for
details.

Inheritance

A process inherits its parent's MAXPROCTIME value if the parent's MAXPROCTIME
value is not unlimited.

If a job queue has a default value for the PROCESSTIME queue attribute, then that
value is inherited by the MAXPROCTIME task attribute of WFL jobs run from that
queue.

If a job queue has a limit value for the PROCESSTIME queue attribute, then WFL jobs
that specify a higher MAXPROCTIME value in the job attribute list cannot be accepted
into that job queue.

86000502-000

MAXPROCTIME (cont.)

Overwrite Rules

Standard overwrite rilles apply, with the following exceptions:

• When a task is initiated, the MAXPROCTlME value is the minimum of the value
inherited from the parent and any value resillting from standard overwrite rules.

• For MAXPROCTIME assignments to an in-use process, the maximum value that can
result is the job's current MAXPROCTIME value, minus the amount of processor
time the process has already used. Attempts to assign a higher value resillt in this
maximum value being assigned. No error or warning is issued.

Run-Time Errors

EXC PROC TIME

The process used more processor time than is allowed by the MAXPROCTIME
task attribute. The process is discontinued with IITSTORYCAUSE = 3
(RESOURCECAUSEV) and IITSTORYREASON = 0 (PROCESSEXCEEDEDV).

TASK ATIRIBUTE ACCESS FAULT

An attempt was made to assign MAXPROCTIME a value greater than its maximum
value. The assigning process, if nonprivileged, is discontinued with mSTORYCAUSE =
2 (PROGRAMCAUSEV) andIITSTORYREASON = 39 (INFANTICIDEV).

86000502-010 2-133

MAXWAIT

MAXWAIT

2-134

Type Real

Units Seconds

Range o to about 4.31E68

Default o (Unlimited)

Read Time Anytime

Write Time Anytime; effective only if in use

Inheritance See below

Overwrite Rules Standard

Host Services Supported

Attribute Number 49

Synonym None

Restrictions None

Explanation

The MAXW AIT task attribute specifies the maximum number of seconds a process can
wait on a BDMS LOCK or SECURE statement in a program. Each of these BDMS
statements finds and locks a record in a Data Management System n (DMSll) data set.
These statements cause a process to wait if the requested record is currently locked by
another process.

Note: The default MAXWAIT value of 0 specifies an unlimited wait.
However, an explicit assignment of 0 to MAXWAIT specifies that the
process is not to wait at all.

If the time limit specified by MAXW AIT is exceeded, the LOCK operation fails and the
database status word stores a DMERROR of DEADLOCK and a DMERRORTYPE of 2.

For information about the BDMS LOCK and SET statements, refer to the appropriate
programming language reference manuals. For the format of the database status word,
refer to the A Series DMSII Application Program Interfaces Programming Guide.

This attribute should not be confused with the W AITLIMIT task attribute, which
specifies the number of seconds a process can wait on an event. Refer to the
W AITLIMIT description in this section for details.

Inheritance

A task inherits the MAXW AIT value of its parent if the parent's MAXW AIT value is not
unlimited.

8600 0502-010

MAXWAIT (cont.)

Example

The following is a BDMSALGOL example:

MYSELF.MAXWAIT := 60;
LOCK FIRST STUDENT: RSLT;
IF BOOLEAN(RSLT) THEN

IF RSLT.DMERROR = DEADLOCK THEN
IF RSLT.DMERRORTYPE = 2 THEN

DISPLAY(IIRECORD NOT UPDATED - LOCKED BY ANOTHER PROCESS II
);

In this example, STUDENT is the name of a data set and RSLT is a real variable.

8600 0502-010 2-135

MCSNAME

MCSNAME

2-136

Type String

Units Not applicable

Range <title>

Default See below

Read Time Anytime

Write Time Never

Inheritance See below

Overwrite Rules None (read-only)

Host Services Supported

Attribute Number 122

Synonym None

Restrictions None

Explanation

The MCSNAME task attribute records the name of the message control system (MCS)
that initiated this process family, if it was initiated by an MCS. For example, processes
initiated from a MARC session have an MCSNAME that refers to CaMS. Processes
initiated from a CANDE session, even if that session is in a CaMS window, have an
MCSNAME that refers to CANDE.

The exact spelling of the MCSNAME corresponds to the file name of the MCS object
code file. No ON <family> part is included. An asterisk (*) might or might not appear
at the start of the MCSNAME. For example, the MCSNAME for CaMS might be
*SYSTEM/COMS. The MCSNAME for CANDE might be SYSTEM/CANDE.

Default

Before a process is initiated, the default MCSNAME value is a null string. When an
MCS sets the SOURCESTATION task attribute of a process, the operating system sets
the MCSNAME attribute to the name of the setting MCS.

Inheritance

A process inherits the MCSNAME value of its parent.

If a WFL job is initiated from a CANDE or MARC session or from a task descended from
such a session, the WFL job inherits the MCSNAME of the session.

86000502-010

MIXNUMBER

MIXNUMBER
Type . Integer

Units Not applicable

Range -9999 to 9999

Default See below

Read Time Anytime

Write Time Never

Inheritance None

Overwrite Rules None (read-only)

Host Services Supported

Attribute Number 1

Synonym STACKNO

Restrictions None

Explanation

The MIXNUMBER task attribute returns the mix number of a process. The mix
number uniquely identifies the process in system messages, log entries, and system
commands that affect the process.

A positive MIXNUMBER value indicates an in-use process or a suspended process. A
negative value indicates a terminated process. A zero indicates that the process has not
yet been initiated.

For a further discussion of mix numbers, refer to the A Series Task Management
Programming Guide.

Default

The system assigns the MIXNUMBER task attribute of a new process the next available
mix number that is not in use.

86000502-000 2-137

MYPPB

MYPPB

2-138

Range

<task equation list>

Type

Units

Range

Default

Read Time

Write Time

Inheritance

Overwrite Rules

Host Services

Attribute Number

Synonym

Restrictions

String

Not applicable

<task equation list>

Null

See below

Before initiation

None

Standard

Not supported

37

TASK

Not available in WFL

<task attribut~ assignment>·~-1--------------I
<fil e equati on>>--------l i

f- • -------,

<1 i brary equati on>>------I
<database equation>-----l

<task attribute assignment>

<file equation>
< database equation>

< library equation>

For the syntax of these assignments, refer to the A Series Work Flow Language (WFL)
Programming Reference Manual.

Explanation

The MYPPB task attribute provides temporary storage for task equations that are not
meant to take effect immediately.

The MYPPB task attribute can be assigned only through calls on the
HANDLEA'ITRIBUTES procedure of the WFLSUPPORT system library. The
user program can control the behavior of HANDLEATTRIBUTES through several
parameters, including one that enables or disables compiler mode and another that
specifies a DISPOSITION.

86000502-000

MYPPB (cont.)

HANDLEATTRIBUTES can assign task equations intended to be applied to a process,
task equations intended to be applied to an object code file, or both. The task equations
intended for a process include

• Compiler task equations assigned in compiler mode with a DISPOSITION of
AIATTACHY.

• N oncompiler task equations assigned in noncompiler mode with a DISPOSITION of
AIATTACHY.

The MYPPB task equations that are intended for a process are applied when one of the
following happens:

• The task variable is used in a process initiation statement.

• The APPLYLIST task attribute of the task variable is assigned a value of TRUE.

The task equations intended for an object code file include all noncompiler task
equations assigned in compiler mode with a DISPOSITION of AIATTACHV or
AIAPPL yv. The system does not apply these task equations, even when APPL YLIST is
set to TRUE or the task variable is used in a process initiation statement. However, if
the task variable is used to initiate a compiler, the compiler applies these task equations
to the object code file it creates.

The HANDLEATTRIBUTES procedure can be invoked repeatedly to make assignments
fo the MYPPB attribute of the same task variable. In this case, the system merges the
task equations provided by each HANDLEATTRIBUTES call with the task equations
already stored in MYPPB. If a particular task equation conflicts with an existing task
equation, the new task equation overwrites the old one.

For a description of the HANDLEATTRIBUTES procedure, refer to "Using
WFLSUPPORT to Access Task Attributes" in Section 1, "Accessing Task Attributes."

Read Time

The MYPPB task attribute canbe read at any time from ALGOL or COBOL74.
However, the value returned is encoded in an internal form that does not resemble the
original MYPPB assignments.

Run-Time Error

MYPPB ATTRIBUTE IS READONLY ON ACTIVE TASK

An attempt was made to assign the MYPPB attribute of an in-use process .. The
assigning process, if nonprivileged, is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) andHISTORYREASON = 33 (READONLYONACTIVEV).

8600 0502-000 2-139

NAME

NAME

2-140

Type String

Units Not applicable

Range <title>

Default See below

Read Time Anytime

Write Time Before initiation

Inheritance See below

Overwrite Rules See below

Host Services Supported

Attribute Number 0

Synonym None

Restrictions None

Explanation

The NAME task attribute specifies the name of the process. The name of the process is
used in the following ways:

• Before initiating an external process, the initiating process typically assigns the
NAME task attribute of the task variable of the external process. The NAME value
specifies the title of the object code file that is to be initiated.

• The NAME value appears in messages and log entries generated for the process.

• Guard files can specify that only processes with a given NAME are allowed to access
a particular file.

If the NAME task attribute of an external process does not include an ON < family
name> part, then by default the system searches for the object code file on the family
named DISK. However, if the FAMILY task attribute specifies substitute families for
DISK, the substitute families are searched instead. Refer to the FAMILY description in
this section for details.

Default and Inheritance

An internal process inherits the NAME value of its parent. For an external process, the
NAME value defaults to the name of the declared external procedure specified in the
initiation statement. For example, in ALGOL the following statements initiate a process
whose NAME task attribute is DATADC:

TASK T;
PROCEDURE DATADC;

EXTERNAL;
PROCESS DATADC [T];

86000502-000

NAM E (cont.)

For an internal process, the NAME value is automatically prefixed with the USERCODE
value of the new process at initiation time. If NAME was explicitly assigned a value that
includ~d a different usercode at the start, this usercode is overwritten with the usercode
of the new process. However, for an external process, NAME can specify an object code
file with a different usercode than the process or a nonusercoded object code file.

Overwrite Rules

Standard overwrite rules are applied. However, you should be aware that the WFL
RUN < object code file title> statement implicitly assigns the specified object code
file title to the NAME task attribute. In the same way, a PROCESS < subroutine
identifier> statement implicitly assigns the subroutine identifier to the NAME task
attribute. Any NAME value previously assigned to the task variable is overridden by
these implicit assignments. These implicit assignments can, in turn, be overridden by
task equations included in the RUN or PROCESS statement. For example, the following
WFLjob initiates the program (STEVENS)OBJECT/TESTB ON.DCOM:

?BEGIN JOB JOBBIT~
TASK T(NAME=(WALLACE)OBJECT/OUTPUT ON DCOM);
RUN (THELMA)OBJECT/NEWDATA ON DCOM [T];

NAME = (STEVENS)OBJECT/TESTB ON DCOM;
?END JOB

The NAME task attribute is also implicitly assigned an object code file title by a MARC
or CANDE RUN statement.

Run-Time Errors

NAME ATTRIBUTE INCORRECT SYNTAX

A process attempted to assign NAME a value that did not conform to the syntax of a
title. The assigning process, if nonprivileged, is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) and HISTORYREASON = 131 (INCORRECTSYNTAXV).

NAME ATTRIBUTE IS READONLY ON ACTIVE TASK

An attempt was made to assign a value to the NAME attribute of an in-use process.
The assigning process, if nonprivileged,· is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) andHISTORYREASON = 33 (READONLYONACTIVEV).

8600 0502-000· 2-141

NOJOBSUMMARYIO

NOJOBSU M MARYIO

2-142

Type Boolean

Units Not applicable

Range TRUE, FALSE

Default FALSE

Read Time Anytime

Write Time Anytime

Inheritance None

Overwrite Rules Standard

Host Services Not supported

Attribute Number 98

Synonym None

Restrictions None

Explanation

The NOJOBSUMMARYIO task attribute specifies whether any information is to be
written to the job log. When NOJOBSUMMARYIO is FALSE, log entries recording
activities of the job and its tasks are written to the job log. When NOJOBSUMMARYIO
is TRUE, no log entries are written to the job log. This setting conserves disk space and
I/O time.

A job can change its NOJOBSUMMARYIO value repeatedly during job execution
to prevent job logging of selected areas of the job. Whenever the value of
NOJOBSUMMARYIO changes from TRUE to FALSE, an entry is made in the job log to
indicate that job log information was not written for part of the job.

If NOJOBSUMMARYIO has a value of TRUE at job initiation and is never reset, the job
log contains only the BOJ entry or log-on entry.

The job summary information in the job file is used as the source for job summaries
that are printed or saved on disk. Thus, any job summary information suppressed by
the NOJOBSUMMARYIO attribute does not appear in printouts produced by the
JOBSUMMARYattribute or injob summary files created by the JOBSUMMARYTITLE
attribute.

NOJOBSUMMARYIO does not prevent information from being written to the system
log.

When a task initiated from a CANDE or MARC session attempts to access its own
NOJOBSUMMARYIO value, the system actually accesses the NOJOBSUMMARYIO
value for the session. In other words, for a task initiated from a session,
MYSELF.NOJOBSUMMARYIO is interpreted as MY JOB.NOJOBSUMMARYIO. Any
assignments made by the offspring actually affect the job summary for the session. In
MARC, you can also assign the NOJOBSUMMARYIO value for a session by using the
MARC NOJOBSUMMARYIO command.

86000502-000

NOJOBSUMMARYIO (cont.)

A task initiated from ajob can read or modify its own NOJOBSUMMARYIO value.
However, for a task the NOJOBSUMMARYIO value has no effect, because a task has
no job summary. The NOJOBSUMMARYIO value of the task's job determines whether
information from that task is written to the job log.

86000502-000 2-143

OPTION

OPTION

2-144

Type Option list

Units Not applicable

Range See "Explanation" below

Default All options reset

Read Time Anytime

Write Time Anytime

Inheritance See below

Overwrite Rules Standard

Host Services Supported

Attribute Number 22

Synonym OPTIONS

Restrictions None

Explanation

The OPTION task attribute assigns or returns the values of various options for the
process. The options affect program dump contents, job summary printing, handling of
backup files, and other areas.

The option value is a single word in which selected bits are associated with particular
options. Most of the options have associated mnemonics that can be used to assign that
bit. Any combination of options can be set at the same time. The following are the
option mnemonics and the effects they have when set:

Option

ARRAYS

AUTORM

BACKUP

BASE

Meaning

All arrays of the stack are dumped if a program dump occurs. The
ARRAYS option can be abbreviated as ARRAY.

If this option and/or the system option AUTORM is set, then any
duplicate library conditions created by the process cause the
removal of the old file. For details, refer to the discussion of shared
files in the A Series Task Management Programming
Guide.

If this option and/or the system option LPBDONLY is set, then any
printer files created by the process are assigned to a backup disk.
Similarly, if this option and/or the system option CPBDONLY is set,
then any punch files created by the process are assigned to a
backup disk. LPBDONLY and CPBDONLY can be assigned by way
of the OP (Options) system command. For details about the effect of
this option, refer to theA Series Task Management
Programming Guide.

The base of the process stack and the Process Information Block
(PIB) are dumped if a program dumpoccurs.

continued

86000502-000

continued·

Option

BDBASE

CODE

DBS

DEBUG

DSED

FAULT

FILES

LIBRARIES

LONG

NOSUMMARY

PRESENTARRAYS

PRIVATELIBRARIES

8600 0502-000

OPTION (cant.)

Meaning

The process assumes some of the characteristics of a job, including
the default printing of backup files at termination time. For details,
refer to the discussion of interprocess relationships in theA Series
Task Management Programming Guide.

The segment dictionary of the task is dumped if a program dump
occurs.

The database stack is dumped if a program dump occurs.

If the process is a COBOL? 4 or FORTRAN process, it executes
special compiled-in debugging code. For details, refer to the
A Series COBOL ANSI-74 Programming Reference
Manual, Volume 1: Basic Implementation and the A Series
FORTRAN Programming Reference Manual.

A program dump occurs if the process is terminated by an external
cause. For a definition of external cause, refer to the A Series
Task Management Programming Guide.

A program dump occurs if the process terminates abnormally from
an internal cause. For a definition of internal cause, refer to the
A Series Task Management Programming Guide.

Information about the files in the stack is dumped if a program
dump occurs. The contents of disk file headers are included in the
hex information output by this option. The FILES option can be
abbreviated as FILE.

All libraries associated with the stack are dumped if a program
. dump occurs. The output from this option includes an analysis of all

library-related information, including library templates and
directories.

No arrays are segmented. This option affects only programs written
in ALGOL, FORTRAN, or FORTRAN??

If the JOBSUMMARY task attribute has a value of DEFAULT, then
the NOSUMMARY option causes the process to behave as if the
JOBSUMMARY task attribute had a value of CONDITIONAL. Refer to
the description of the JOBSUMMARY task attribute earlier in this
section.

Only those arrays that are present in memory are dumped if a
program dump occurs. This option reduces the size of a program
dump as well as the time the system takes to generate the program
dump. Note that if the ARRAYS option is also set, it overrides
PRESENTARRAYS and causes all arrays to be dumped. The
PRESENTARRAYS option can be abbreviated as PRESENTARRAY.

Any private libraries used by the process are dumped if a program
dump occurs. This option causes an analysis of all library-related
information, including library templates and directories.

continued

2-145

OPTION (cont.).

continued

Option

(private process)

SIBS

SORTLI M ITS

TODISK

TOPRINTER

Meaning

The descendants of the process are prevented from altering the task
attribu~es of the process. Any descendant that attempts to assign an
attribute of this process is discontinued. This option is typically
assigned to message control systems (MCSs) to prevent tasks
initiated by sessions from accessing the task attributes of the MCS.
There is no mnemonic for this option, which must be assigned by bit
number (see the following discussion of bits and their mnemonics).

This option has no effect on the Mark 3.6 release and later releases.

Setting this option protects a process that has invoked the SORT
facility from being terminated if SORT runs out of memory or disk
space. Instead, the process is suspended and the system displays
an RSVP message asking the operator to enter an OK (Reactivate)
system command to allow SORT to allocate more memory or disk
space. For information about the SORT facility, refer to the
A Series System Software Utilities Operations Reference
Manual.

Causes any program dumps generated by the process to be directed
to a disk file. This is also the default behavior if the operating
system option PDTODISK is set. For details about the effects of this
option, refer to theA Series Task Management
Programming Guide.

Causes any program dumps generated by the process to be directed
to the task file. This is also the default behavior if the operating
system option PDTODISK is not set. For details about the effects of
this option, refer to the A Series Task Management
Programming Guide.

The following are the meanings of the various bits in the OPTION value:

Bit

[47:01]

[24:01]

[23:01]

[22:01]

[21 ;01]

[20:01]

[19:01]

[18:01]

[15:01]

[14:01]

[12:01]

2-146

Corresponding OPTION Mnemonic

This bit is set by an OPTION assignment statement in WFL that uses an
asterisk (*) to retain the previous option values. (See "Examples"
following.)

TOPRINTER

TODISK

SORTLIMITS

DEBUG

PRIVATELIBRARIES

LIBRARIES

SIBS

DBS

private' process

NOSUMMARY

continued

86000502-000

OPTION (cant.)

continued

Bit Corresponding OPTION Mnemonic

[11 :01] PRESENTARRAYS, PRESENTARRAY

[10:01] FILES

[09:01] CODE

[08:01] ARRAYS

[07:01] BASE

[06:01] BDBASE

[05:01] AUTORM

[04:01] BACKUP

[02:01] DSED

[01:01] FAULT

[00:01] LONG

The operator can change the value of the OPTION task attribute with the DUMP
(Dump Memory) system command or the DS (Discontinue) system command. Both
these commands can include option lists that set program dump options of the OPTION
task attribute.

On the other hand, program dump statements in programs do not modify the value of
. the OPTION task attribute, even if these statements specify dump options. Any dump
options specified in a program dump statement thus do not affect later program dumps
generated by the process. For information about program dump statements, refer to the
A Series Task Management Programming Guide.

Inheritance

An internal process inherits the OPTION value of its parent. External processes do not
inherit OPTION values.

Examples

The following are ALGOL examples of several methods of setting the OPTION value:

100 TVAR.OPTION := 0;
200 TVAR.OPTION := 2**VALUE(ARRAYS) + 2**VALUE(FILES);
300 TVAR.OPTION := 1111010000000011 ;
400 TVAR.OPTION := 1280;
500 TVAR.OPTION := * & l[VALUE(ARRAYS):l] & l[VALUE(FILES):l];
600 TVAR.OPTION := * & 0[VALUE(FILES):1];

In this example, the statement at line 100 resets all the options. The statement at
line 200 sets the ARRAYS and FILES options and resets all the other options. The
statements at lines 300 and 400 have the same effect. The statement at line 500 has a
similar effect, except that it does not reset any options that were set previously. The

86000502-000 2-147

OPTION (cont.)

2-148

statement at line 600 resets a single option (FILES) while leaving the other options
unchanged. Where the VALUE function is used in these examples, it returns the bit
position of the specified mnemonic.

The following COBOL74 example assigns the FAULT option to the OPTION task
attribute and leaves any other options unchanged. Note that if line 600 were omitted,
the example would reset all options except FAULT:

100 WORKING-STORAGE SECTION.
200 01 OPTION-WORD PIC 9(11) BINARY.
300 01 VALUE-ONE PIC 9(11) BINARY VALUE 1.
400 PROCEDURE DIVISION.
500 P-1.
600 MOVE ATTRIBUTE OPTION OF MYSELF TO OPTION-WORD.
700 MOVE VALUE-ONE TO OPTION-WORD [0:VALUE FAULT:1].
800 CHANGE ATTRIBUTE OPTION OF MYSELF TO OPTION-WORD.

The following is an example of an OPTION task attribute assignment in WFL:

OPTION = (*,ARRAYS,FILES);

This example assigns the ARRAYS and FILES options and leaves unchanged any options
that were already set. If the asterisk (*) is not included, then all options are reset except
the ones specifically assigned by the statement.

Run-Time Error

NON·OWNER ACCESS OF A PRIVATE TASK

A descendant of a private process has attempted to make an assignment to a
task attribute of the private process. (A private process is one whose OPTION
task attribute has the "private process" option set.) The descendant process, if
nonprivileged, is discontinued with HISTORYCAUSE = 2 (PROGRAMCAUSEV) and
mSTORYREASON = 56 (NONOWNERACCESSV).

86000502-000

ORGUNIT

ORGUNIT
Type Integer

Units Not applicable

Range See "Explanation" below

Default See below

Read Time Anytime; accurate after initiation

Write Time Never

Inheritance See below

Overwrite Rules None (read-only)

Host Services Not supported

Attribute Number 38

Synonym None

Restrictions None

Explanation

The ORGUNIT task attribute records the Logical Station Number (LSN) or physical
unit number of the unit that initiated this process. For example, for a process initiated
by a CANDE RUN command, this task attribute records the LSN of the terminal where
the RUN command was entered. The offspring of a process also inherit the ORGUNIT
value of that process.

The following fields are defined in the ORGUNIT value:

Field

[15:01]

[14:15]

Meaning

If set, the job was started from a remote terminal. If reset, the job was
started from another source, such as an OOT, a card reader, or the
operating system.

If [15:01] is set, this field contains the LSN of the originating terminal. If
[15:01] is reset, this field contains the physical unit number of the
originating device.

The ORGUNIT value is 0 for processes initiated by the ??RUN (Run Code
File) primitive system command, for processes initiated by independent
runners, and for remote processes.

For details about how to access these fields, refer to "Accessing Task Attributes at the
Bit Level" in Section 1, "Accessing Task Attributes. "

One typical use of ORGUNIT is to examine bit 15 to determine whether a process
was initiated from a remote terminal. The process can use this information to decide
whether to open a remote file to communicate with the user. A process can more
precisely determine the type of source from which it was initiated by reading the
SOURCEKIND task attribute.

If the process was initiated from a remote terminal, it might be useful for the process to
read ORGUNIT to extract the LSN. By assigning field [14:15] of the ORGUNIT value

86000502-010 2-149

ORGUNIT (cont.)

2-150

to the STATION task attribute, the process can make it possible to open a remote file
at the originating station. (An alternate method of learning the LSN is to read the
SOURCESTATION task attribute.)

Note: The LSN associated with any particular station can change over
time. The ORGUNIT value is not updated to reflect such changes.
An alternative to ORGUNIT is the SOURCENAME task attribute.
SOURCENAME stores the originating station name, which is less
volatile than the LSN.

The physical unit returned by ORGUNIT can be a useful aid to assigning an ODT file, as
shown under "Example" in this description.

Default

Before a process is initiated, the default ORGUNIT value is O. At initiation time,
ORGUNIT is automatica1.1y assigned the correct value.

Inheritance

A process inherits the ORGUNIT value of its parent.

If a WFL job is initiated from a CANDE or MARC session or from a task descended from
such a session, the WFL job inherits the ORGUNIT of the session.

Example

The following ALGOL example shows two uses of ORGUNIT:

100 BEGIN
110 FILE TERM (MYUSE=IO,DEPENDENTSPECS=TRUE);
120
130 IF MYSELF.SOURCEKIND = VALUE(REMOTE) THEN
140 BEGIN
150 TERM.KIND := VALUE(REMOTE);
160 MYSELF.STATION := MYSELF.ORGUNIT.[14:15];
170 END;
180 IF MYSELF.SOURCEKIND = VALUE(ODT) THEN
190 BEGIN
200 TERM.KIND := VALUE(ODT);
210 TERM.UNITNO := MYSELF.ORGUNIT.[14:15];
220 END;
230
240 OPEN (TERM);
250 WRITE (TERM, II, "HI, HOW ARE YOU");
260 END.

This program examines the SOURCEKIND value to determine whether it was initiated
from a remote terminal or an ODT. The statement at line 160 is equivalent to

MYSELF.STATION := MYSELF.SOURCESTATION;

86000502-010

ORGUNIT (cont.)

For more information, refer to the description of the STATION task attribute in this
section.

If the program was initiated at an ODT, the statement at line 210 assigns the physical
unit number of the ODT to the UNITNO file attribute. This assignment allows the file
to be automatically opened at the ODT, and saves the operator from having to enter a
LABEL (Label ODT) system command. Note that this statement is not necessary if the
MYUSE file attribute value is OUT instead ofIO or IN. For further information about
ODT files, refer to the A Series I/O Subsystem Programming Guide.

Note also that use of the UNITNO file attribute is restricted on systems running
InfoGuard security enhancement software at the S2 level; refer to the A Series Security
Administration Guide for details.

86000502-010 2-151

OTHERPBITCOUNT

OTHERPBITCOUNT

2-152

Type Real

Units Presence-bit operations

Range o to about 4.31E68

Default 0

Read Time Anytime

Write Time Never

Inheritance None

OVerwrite Rules None (read-only)

Host Services Not supported

Attribute Number 106

Synonym None

Restrictions None

Explanation

The OTHERPBITCOUNT task attribute returns the count of noninitial presence-bit
operations for the process since its initiation.

For information about noninitial presence-bit operations, refer to the A Senes Task
Management Programming Guide.

86000502-010

OTHERPBITTIME

OTHERPBITTIME
Type Real

Units See below

Range o to about 4.31 E68

Default 0

Read Time Anytime

Write Time Never

Inheritance None

Overwrite Rules None (read-only)

Host Services Not supported

Attribute Number 107

Synonym None

Restrictions None

Explanation

The OTHERPBITTIME task attribute returns the total time spent processing noninitial
presence-bit actions for this process. .

For information about noninitial presence-bit operations, refer to the A Series Task
Management Programming Guide.

Units

In most languages, this value is returned in units of 2.4 microseconds. However, in WFL
this value is returned in units of seconds.

86000502-000 2-153

PARTNER

PARTNER

2-154

Type Task

Units Not applicable

Range Any task variable

Default See below

Read Time Anytime

Write Time Anytime

Inheritance None

Overwrite Rules Standard

Host Services Supported

Attribute Number 19

Synonym None

Restrictions Not available in WFL or APLB

Explanation

The PARTNER task attribute accesses the task variable of the partner process. .
The partner process is the one to which control is passed when an ALGOL process
executes a simple CONTINUE statement or a COBOL74 process executes an EXIT
PROGRAM statement. Also, the system automatically continues the partner process of
a synchronous task when the synchronous task terminates.

A process can use the PARTNER task attribute as a means to read or write the task
attributes of the partner process. For example, a process can determine the identity
of the partner process by reading the NAME task attribute of the PARTNER task
attribute. The following is an ALGOL example of such a statement:

REPLACE NAMEARR BY MYSELF.PARTNER.NAME;

A process can also use the PARTNER task attribute to assign a particular process to
be the partner process. However, setting the PARTNER task attribute to a process
other than the parent is not recommended. Such a practice causes each CONTINUE
statement to use more processor time and also leads to source code that is difficult to
understand and maintain.

If this process does not have a partner, then the PARTNER task attribute is treated as
a reference to the MYSELF task variable. When PARTNER refers to MYSELF, any
attempt to continue the partner process has no effect. Execution simply continues to the
next statement in the same process.

For more information about partner processes, refer to the A Series Task Management
Programming Guide. Also, see the description of the P ARTNEREXlSTS task attribute
in this section.

86000502-000

PARTNER (cont.)

Default

For an independent process or an asynchronous dependent process, the default value of
PARTNER is a reference to MYSELF. However, if the process initiates a synchronous
dependent offspring, PARTNER changes to a reference to that offspring.

For a dependent process with no offspring, the default value of PARTNER is usually a
reference to the initiator of the process. However, PARTNER defaults to MYSELF for
such a process if any of the following conditions are true:

• The parent is a WFL job.

• The process was initiated from a MARC or CANDE session.

• The process is a remote process. That is, it was initiated from one BN A host system
and runs on a different host system.

When a dependent process A initiates a dependent offspring B, the PARTNER task
attribute of dependent process A remains unchanged. It does not become a reference to
dependent offspring B unless explicitly assigned.

Run-Time Errors

ILLEGAL VISIT

A process executed a simple CONTINUE statement and the PARTNER task attribute
did not refer to MYSELF or a continuable partner process. The process is discontinued
with HISTORYCAUSE = 2 (PROGRAMCAUSEV) and HISTORYREASON = 6
(ILLEGAL VISITV).

VISIT NONACTIVE TASK

A process attempted to use a CONTINUE statement to transfer control to a
process that is not in use (that is, a prOcess that has terminated or has not yet been
initiated). The process that executed the CONTINUE statement is discontinued
with HISTORYCAUSE = 2 (PROGRAMCAUSEV) and HISTORYREASON = 5
(VISITNONACTIVEV).

8600 0502-000 2-155

PARTN EREXISTS

PARTN EREXISTS

2-156

Type Boolean

Units Not applicable

Range TRUE, FALSE

Default FALSE

Read Time Anytime

Write Time Never

Inheritance None

Overwrite Rules None (read-only)

Host Services Not supported

Attribute Number 27

Synonym None

Restrictions None

Explanation

The P ARTNEREXISTS task attribute indicates whether the partner process is a
continuable coroutine. The partner process is the process indicated by the PARTNER
task attribute. P ARTNEREXISTS returns a value of TRUE only if all the following
conditions are true:

• The process is a synchronous process.

• The partner process is a separate process whose state is TO BE CONTINUED.

• The partner process is not a WFL job.

For more information about partner processes, refer to the A Series Task Management
Programming Guide. Also, see the description of the PARTNER task attribute in this
section.

86000502-000

PRINTDEFAULTS

PRINTDEFAULTS

Range

< print specification>

Type

Units

Range

Default

Read Time

Write Time

Inheritance

Overwrite Rules

Host Services

Attribute Number

Synonym

Restrictions

IE,
~rint attribute phras~

print modifier phrase

<print attribute phrase>
<print modifier phrase>

String

Not applicable

< print specification>

Null string

Anytime

Anytime

See below

Standard

Not su pported

99

None

Not reada ble in WFL

For a discussion of print attributes and print modifiers, refer to the A Series Print
System (PrintS/ReprintS) Administration, Operations, and Programming Guide.

Explanation

The PRINTDEFAULTS task attribute specifies default values for print attributes
and print modifiers. These default values are applied to any print attributes or print
modifiers that are not explicitly assigned values by the process.

For an overview of all the task attributes related to printing, refer to the A Series Task
Management Programming Guide.

Inheritance

A process inherits the PRINTDEFAULTS value of its parent.

If the system administrator has assigned a PRINTDEFAULTS attribute to a usercode,
then MARC or CANDE sessions with that usercode receive that PRINTDEFAULTS
value at log-on time. You can use the MARC PRlNTDEFAULTS command to change
the PRINTDEFAULTS value of a MARC session.· You can use the CANDE PDEF
command to change the PRINTDEFAULTS value of a CANDE session. Any processes

86000502--010 2-157

PRINTDEFAULTS (cont.)

2-158

initiated from a MARC or CANDE session inherit the PRINTDEF AULTS value of the
session.

The PRINTDEFAULTS attribute ofa usercode is also inherited by WFLjobs that are
assigned that usercode in the job attribute list. However, if the job attribute list also
contains a PRINTDEFAULTS assignment, the PRINTDEF AULTS attribute of the
usercode is ignored.

Examples

The following is an example of a PRINTDEFAULTS assignment in WFL:

TVAR (PRINTDEFAULTS = (DESTINATION = "LP4", USERBACKUPNAME = TRUE,
SAVEBACKUPFILE = TRUE));

The following is an example ofaPRINTDEFAULTS assignment in COBOL74:

CHANGE ATTRIBUTE PRINTDEFAULTS OF TASK-VAR-l TO
"DESTINATION = ""LP4 1111

, USERBACKUPNAME = TRUE.".

The following is an example of a PRINTDEFAULTS assignment in ALGOL:

REPLACE T.PRINTDEFAULTS BY
"DESTINATION = IIIIIILP4""", USERBACKUPNAME = TRUE,"
"SAVEBACKUPFILE = TRUE.";

Run-Time Errors

PRINTDEFAULTS ATTRIBUTE INCORRECT SYNTAX

A process attempted to assign PRINTDEFAULTS a value that did not conform to the
print specification syntax. The assigning process, if nonprivileged, is discontinued
with mSTORYCAUSE = 2 (PROGRAMCAUSEV) and mSTORYREASON = 131
(INCORRECTSYNTAXV).

WAITING FOR PRINTSUPPORT TO INITIALIZE

A process attempted to read or assign PRINTDEFAULTS, and the print support library
is not available. The process is suspended until the print support library initializes.
For information about initializing the print support library, refer to the A Series Print
System (printS/ReprintS) Administration, Operations, and Programming Guide.

86000502-010

PRIORITY

PRIORITY
Type Integer

Units Not applicable

Range Oto 99

Default 50

Read Time Anytime

Write Time See below

Inheritance See below

Overwrite Rules See below

Host Services Supported

Attribute Number 3

Synonym DECLAREDPRIORITY

Restrictions None

Explanation

The PRIORITY task attribute specifies the degree of precedence this process has when
competing with other processes for system resources. In general, the higher the number
assigned to PRIORITY, the faster the process runs.

The priority of a process is affected by other factors in addition to the PRIORITY
task attribute. For details, refer to the discussion of priority in the A Series Task
Management Programming Guide.

If a limit value is set for the PRIORITY attribute of ajob queue, then WFL jobs that
specify a higher PRIORITY value in the job attribute list cannot be accepted into that job
queue.

For PRIORITY assignments made before initiation, for example, in the job attribute list
of a WFL job, only values 1 through 99 are effective. A PRIORITY assignment of 0 is
converted to the default of 50 at process initiation, unless inheritance or overwrite rules
result in a different value.

Write Time

The PRIORITY task attribute can be assigned a value at any time. The PRIORITY value
reflects assignments made after initiation; however, such assignments do not change the
actual priority of the process. Only a PR (Priority) system command can effectively
change the PRIORITY task attribute value after initiation.

86000502-010 2-159

PRIORITY (cont.)

Inheritance

A process inherits the PRIORITY value of its parent.

At the start of any CANDE or MARC session, CANDE or MARC reads the
USERDATAFILE to determine if the usercode of the session has a PRIORITY attribute
defined for it. If so, CANDE or MARC stores this PRIORITY value as the priority of the
session. The session priority is inherited by processes initiated from that session.

Ifno PRIORITY attribute is defined for the usercode, the session receives no session
priority and processes inherit the default PRIORITY value of 50.

If the PRIORITY usercode attribute value is changed after the start of the session, the
session priority remains unchanged.

The PRIORITY attribute of a usercode is also inherited by WFL jobs that are assigned
that usercode in the job attribute list, or that inherit the terminal usercode of an ODT.

If a default value is set for the PRIORITY job queue attribute, then that value is
inherited by the PRIORITY task attribute ofWFLjobs run from that queue.

Overwrite Rules

Standard overwrite rules apply, with the following exceptions:

• Processes initiated from CANDE or MARC sessions cannot be assigned a PRIORITY
value any higher than the session priority (if there is one). !fa task equation or code
file PRIORITY assignment requests a higher PRIORITY value than the session
priority, the process inherits the session priority.

• If a process is initiated from a MARC session, any PRIORITY value stored in the
object code file is ignored. The object code file PRIORITY value is ignored even if it
is lower than the session priority, or if there is no session priority.

• If a session priority exists for a CANDE session, then any PRIORITY value stored in
the object code file is ignored.

• In general, tasks can be assigned a higher priority than their parents. However,
descendants ofWFLjobs cannot be assigned a higher PRIORITY value than the
PRIORITY job queue limit (if there is one). When the descendant task is initiated, it
receives a PRIORITY value equal to the lower of the following values: the requested
PRIORITY value and the job queue PRIORITY limit.

2-160 86000502-010

RESOURCE
Type Resource

Units Not applicable

Range <resource list>

Default Unlimited

Read Time Never

Write Time Before initiation

Inheritance See below

Overwrite Rules Standard

Host Services Supported

Attribute Number 53

Synonym None

Restrictions Available only in WFL

Range

< resource list>

-- (1~ /1\- TAPE ~'= --<tape count>~)
/1\- TAPE7
/1\- TAPE9
/1\- TAPEPE

<tape count>

An integer in the range 0 to 255.

Explanation

RESOURCE

The RESOURCE task attribute allows the programmer to specify the number and type
of tape units required by the process and its descendants. The value T APE7 refers to
7-track tape, TAPE9 refers to 9-track tape, and TAPEPE refers to phase-encoded tape.
The value TAPE includes all kinds of magnetic tapes.

Note: The values TAPE7, TAPE9, and TAPEPE will be deimplemented
on a future release.· A warning of the change is displayed when a
process uses the RESOURCE task attribute.

If the RESOURCE value of a process requests more tape units of any type than are in
the overall tape poo~ then process initiation is interrupted and the process appears in
the W (Waiting Entries) system command display with a "WAITING FOR RESOURCE"
RSVP message. The overall tape pool consists of tape units that have been acquired by
the system and have not been opened by any process.

If a RESOURCE value is assigned to a task, then the RESOURCE value is compared
with the local tape pool as well as the overall tape pool. The local tape pool is defined by

86000502-000 2-161

RESOURCE (cont.)

2-162

the most immediate ancestor process for which RESOURCE was explicitly set. The
local tape pool is the number of tapes of each type that can be opened by that ancestor
process and all its descendants at any given time. The local tape pool is decremented by
one when any of these processes opens a tape file and incremented by one when any of
them closes a tape file. If a task is initiated with a RESOURCE value that specifies more
tape units than are available in the local tape pool, the task appears in the W display
with a "WAITING FOR RESOURCE" RSVP message.

However, RESOURCE does not actually impose a limit on the number of tape files a
process can attempt to open. A process can have a RESOURCE value of (TAPEPE = 0)
and still open a TAPEPE file. The only effect of RESOURCE is to interrupt initiation of
a process whose RESOURCE value requests more tapes than are available.

A process in this condition is neither scheduled nor suspended. Initiation is halted at a
later stage than it is for a scheduled process, which has only a mix number and a PIB.
A process whose initiation was suspended because of a missing tape resource has a mix
number, a PIB, and also a process stack. However, the code segment dictionary does not
yet exist and execution of the process has not begun.

The RESOURCE task attribute is useful for preventing deadlock conditions. For
example, there could be four tape units and two processes, each of which needs to use
three tape units. If these processes run simultaneously, and RESOURCE is not set for
either one, then the processes might succeed in opening two tape units each. Once this
has happened, neither process can proceed any further until the other one is terminated
by an operator action, such as a DS (Discontinue) system command.

The RESOURCE task attribute has effect only if the system option RESOURCECHECK
is set. This option can be set using the OP (Options) system command. If
RESOURCECHECK is reset, then processes are initiated normally regardless of their
RESOURCE value. '

The RESOURCE task attribute can be accessed only from WFL. It can be assigned to a
WFL job in the job attribute list or to tasks by assignments to the task variable or task
equations. If RESOURCE is assigned in the job attribute list of a WFL job, then the job
cannot be accepted into a job queue with a tape specification that specifies fewer tapes.

Inheritance

A process inherits the RESOURCE value of the closest ancestor that has a RESOURCE
value set (if any).

A task cannot be assigned a RESOURCE value higher than what it would inherit from
an ancestor. An attempt to assign the task a higher value causes task initiation to fail
with the error "TAPE LIMIT EXCEEDED". However, the initiating process continues
normally. .

Example

The following WFL job includes a RESOURCE assignment for the job as a whole, as well
as a RESOURCE assignment for each task. The example is based on the assumption

86000502-000

RESOURCE (cont.)

that the first task needs a maximum of three tapes during its execution, and the second
task needs a maximum of two.

?BEGIN JOB TAPEUSER;
RESOURCE=(TAPE=5);

PROCESS RUN PROG/ONE;
RESOURCE=(TAPE=3);

PROCESS RUN PROG/TWO;
RESOURCE=(TAPE=2);

?END JOB

Run-Time Error

RESOURCE ATTRIBUTE IS WRITE ONLY

An attempt was made to read the RESOURCE attribute of a process. The
inquiring process, if nonprivileged, is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) andHISTORYREASON = 129 (ATTWRITEONLYV).

86000502-000 2-163

RESTART

RESTART

2-164

Range

Type

Units

Range

Default

Read Time

Write Time

Inheritance

Overwrite Rules

Host Services

Attribute Number

Synonym

Restrictions

Integer

Process restarts

o to 131071; also see "Range" below

o
Anytime; actual after initiation

Anytime

None

Standard

Not su pported

28

None

None

If an attempt is made to assign a value greater than 131071, RESTART is set to 131071.
If an attempt is made to assign a value less than 0, RESTART is set to 1.

Explanation

The RESTART task attribute can be used to cause a process to be automatically
reexecuted following an abnormal termination. The process is reexecuted if RESTART
has a nonzero value at the time of the termination and the termination is due to
an internal cause. For a definition of internal cause, refer to the A Series Task
Management Programming Guide.

Reexecution begins with the first statement in the outer block of the process. The value
assigned to RESTART determines how many times the process can be reexecuted. The
value of RESTART is automatically decreased by 1 after each reexecution of the process.

For related information, refer to the discussion of restartingjobs and tasks in the
A Series Task Management Programming Guide.

86000502-000

RESTARTED

RESTARTED
Type Boolean

Units Not applicable

Range TRUE, FALSE

Default FALSE

Read Time Anytime

Write Time Anytime

Inheritance None

Overwrite Rules Standard

Host Services Not supported

Attribute Number 48

Synonym None

Restrictions None

Explanation

The RESTARTED task attribute records whether the process has been restarted.

-For a WFL job, RESTARTED is set to TRUE when the job automatically restarts after a
halt/load. For a checkpointed process, RESTARTED is set to TRUE when the process is
restarted by way of a WFL RERUN statement. .

The value of RESTARTED is not affected by automatic retries that are caused by the
RESTART task attribute. These two task attributes are completely unrelated.

Assigning a value to this attribute has no effect on the process. However, the new value
is returned if the RESTARTED yalue is read later.

For further information, refer to the discussion of restarting jobs and tasks in the
A Series Task Management Programming Guide.

86000502-000 2-165

SAVEMEMORYLIMIT

SAVEMEMORYLIMIT
Type Real

Units Words

Range o to 274877906943

Default o (Unlimited)

Read Time Anytime

Write Time Anytime

Inheritance See below

Overwrite Rules See below

Host Services Supported

Attribute Number 112

Synonym SAVECORELIMIT

Restrictions None

Explanation

The SA VEMEMORYLIMIT task attribute specifies the maximum amount of save
memory that a process can use. When the amount of save memory in use by a
process exceeds the value of the SA VEMEMORYLIMIT task attribute, the process is
discontinued.

The reason for setting a limit on save memory usage by a process is that save memory
cannot be overlaid. As the proportion of total memory set aside as save memory
increases, it becomes increasingly more difficult for the system to manage memory
efficiently. A process that uses abnormally large amounts of save memory can therefore
have an adverse effect on the performance of all other processes running on the system.
By setting a SA VEMEMORYLIMIT for a process, you can prevent this from happening.

Inheritance and Overwrite Rules

At initiation, a process receives a SA VEMEMORYLIMIT value that is the minimwn
value received from the following sources:

• The parent's SA VEMEMORYLIMIT value

• The SA VEMEMORYLIMIT usercode attribute value, if one is defined for the
usercode of this process

• The limit value for the SA VEMEMORYLIMIT job queue attribute, if the process is a
WFLjob submitted through ajob queue that has such a limit defined

• Any SA VEMEMORYLIMIT value that was assigned to the task variable of the
process before initiation

• Any SA VEMEMORYLIMIT value that was assigned to the object code file of the
process before initiation

2-166 86000502-000

SAVEMEMORYLIMIT (cant.)

Note that a SA VEMEMORYLIMIT value of 0 means there is no limit on save memory
usage. Thus, when determining the minimum, the system ignores any of these sources
that has a zero value.

Ifnone of these sources provides a nonzero value, and the process is a WFLjob
submitted through ajob queue with a default SA VEMEMORYLIMIT value, then the job
queue default value is inherited by the process.

Once a process is running, any assignment statements that increase the current
SA VEMEMORYLIMIT value are ignored. No error is issued, but the requested change
is not made.

Run-Time Error

USER SAVE MEMORY LIMIT EXCEEDED

The process attempted to use more save memory than was allowed by
the SA VEMEMORYLIMIT value. The process is discontinued with
HISTORYCAUSE = 3 (RESOURCECAUSEV) and HISTORYREASON = 14
(SA VECORELIMITEXCEEDEDV).

8600 0502-000 2-167

SOURCEKIND

SOURCEKIND

2-168

Type Real

Units Not applicable

Range See "Explanation" below

Default See below

Read Time Anytime; actual after initiation

Write Time Never

Inheritance See below

Overwrite Rules None (read-only)

Host Services Supported

Attribute Number 47

Synonym None

Restrictions None

Explanation

The SOURCEKIND task attribute records the type of device that initiated this process
family.

One typical use of this attribute is to help decide what value to assign the KIND file
attribute of input files used by a process: REMOTE, ODT, READER, and so on. The
SOURCEKIND values, and their associated mnemonics, correspond to several of the
possible values of the KIND file attribute.

The following are the possible values and their meanings:

Mnemonic
Value

(None)

OOT

REMOTE

PAPERREADER

READER

Default

Integer Value

o

2

3

4

9

Meaning

There is no device type. For example, the process
might have been initiated by a ??RUN (Run Code
File) primitive system command, an independent
runner, or a device on a remote BNA host system.

Operator display terminal (ODT).

Remote terminal.

Papertape reader.

Card reader.

Before a process is initiated, the default SOURCEKIND value is o.

At initiation time, the system assigns SOURCEKIND the appropriate value. For
example, processes initiated from CANDE or MARC sessions receive a SOURCEKIND
of 3 (remote terminal).

86000502.:...000

SOURCEKIND (cont.)

Inheritance

A process inherits the SOURCEKIND value of its parent.

Example

The following ALGOL statement uses SOURCEKIND to determine what value to assign
to the KIND attribute of a file:

86000502-010

IF MYSELF.SOURCEKIND = VALUE(REMOTE)
THEN TERM. KIND := VALUE(REMOTE)
ELSE TERM.KIND := VALUE(READER);

2-169

SOURCENAME

SOURCENAME

2-170

Type ' String

Units Not applicable

Range <name>

Default See below

Read Time Anytime

Write Time Never

Inheritance See below

Overwrite Rules None (read-only)

Host Services Supported

Attribute Number 121

Synonym None

Restrictions None

Explanation

The SOURCENAME task attribute records the name of the unit that initiated this
process family. It corresponds to the name of the unit stored in the SOURCESTATION
task attribute.

A process originating from a unit is assigned a SOURCENAME applicable to that unit.
For example, a process initiated from SC 2 is assigned a SOURCENAME of SC2. A
process originating from a remote station is assigned a SOURCENAME of the station
designated by the SOURCESTATION task attribute. If the SOURCESTATION task
attribute designates an invalid logical station number (LSN), then the system assigns
SOURCENAME the value STATION/LSNnnnn, where nnnn represents the LSN.

If the process family was initiated from a pseudostation, the SOURCENAME returns
the name of the pseudostation rather than the physical station. For example, if the
process family originated from the COMS window CANDE/3 at physical station ST143,
the SOURCENAME is STl43ICANDE/3.

Default

Before a process is initiated, the default SOURCENAME value is a null string. At
initiation time, the system assigns the appropriate SOURCENAME value to the process.
Processes initiated from a MARC or CANDE session receive a SOURCENAME value
that records the name associated with the LSN from which the process originated. This
SOURCENAME is applied when the MCS sets the SOURCESTATION task attribute.

86000502-010

SOURCENAME (cont.)

Inheritance

A process inherits the SOURCENAME value of its parent.

If a WFL job is initiated from a CANDE or MARC session or from a task descended from
such a session, the WFLjob inherits the SOURCENAME of the session.

Example

The following WFL job runs a program that opens a remote file. The remote file has an
internal name of REM. WFL equates the title of REM to the SOURCENAME value.
The result is that the remote file is opened at the station where the WFL job originated.

?BEGIN JOB;
RUN OBJECT/PROG;

FILE REM(TITLE = #MYSELF(SOURCENAME»;
?END JOB

86000502-010 2-171

SOU RCESTATION

SOU RCESTATION
Type Real

Units Not applicable

Range See "Explanation" below

Default See below

Read Time Anytime; actual after initiation

Write Time See "Explanation" below

Inheritance See below

Overwrite Rules Object code file dominant

Host Services Supported

Attribute Number 45

Synonym None

Restrictions None

Explanation

The SOURCESTATION task attribute records the unit that initiated this process family.
The SOURCE STATION value is divided into the following fields:

Field

[47:01]

2-172

Meaning

This field affects the printing of job summaries by any WFL jobs that are
initiated by this process. If the value is 0 (zero), the WFL job summary
file is saved under a special title for later printing by a message control
system (MCS). The title is built under the *REMLPnn/ = directory,
where nn is the MCS number of the MCS that controls the LSN specified
in field [14:15]. On the other hand, if [47:01] has a value of 1, then the
WFL job summary is printed in the normal manner.

Note: The system ignores a 0 value in this field if the rest of
the SOURCESTATION value is also o. If you wish
to save job summaries, but you do not wish to set
fields [46:01] or [14:15], you can make this field valid
by setting another bit such as [45:01].

An MCS can write to this field, but cannot read it. Other processes
cannot read from or write to this field.

The DESTNAME and DESTSTATION task attributes completely override
the effect of this field if they are assigned values. For further information,
refer to the descriptions of these attributes in this section.

continued

86000502-010

continued

Field

[46:01]

[14:15]

SOURCESTATION (cont.)

Meaning

If the value is 0 (zero), the system forwards copies of all process
messages to the MCS that controls the LSN specified in field [14:15].
Forwarded messages include DISPLAY messages, "BOT" and "EOT"
messages, and so on.

Note: The system ignores a 0 value in this field if the rest of
the SOURCESTATION value is also O. If you wish
to forward process messages, but you do not wish to
set fields [47:01) or [14:15), you can make this field
valid by setting another bit such as [45:01).

An MCS can write to this field, but cannot read it. other processes
cannot read from or write to this field.

The system stores the physical unit number of the originating unit in this
field. If the originating unit is a remote terminal, the controlling MCS
typically overwrites this field with the LSN of the originating terminal.
This field determines the MCS to which process messages are forwarded
(refer to the description of field [46:01]). This field contains 0 (zero) for
processes initiated by the ??RUN (Run Code File) primitive system
command, by system software, or by a device on a remote BNA host
system.

An MCS can read from or write to this field. other processes can read
from this field, but cannot write to it.

For details about how to access these fields, refer to "Accessing Task Attributes at the
Bit Level" in Section 1, "Accessing Task Attributes."

Note: The LSN associated with any particular station can change
over time. The SOURCESTATION value is not updated to
reflect such changes. An altemative to SOURCESTATION is
the SOURCENAME task attribute. SOURCENAME stores the
originating station name, which is less volatile than the LSN.

Only an MCS can make assignments to this task attribute. The MCS can assign this
attribute to a process only before the process is initiated.

Though the SOURCESTATION value is divided into fields, the first two fields are not
readable. Therefore, a process can read SOURCESTATION in the same way as it reads
a simple real-valued task attribute, without attempting to read the individual fields.

A process can only indirectly determine whether the SOURCESTATION value
is an LSN or a physical unit number. One method of determining this is for the
process to read the SOURCEKIND task attribute value. If SOURCEKIND = 3, then
SOURCESTATIONis an LSN. Refer to the SOURCEKIND description in this section

, for details.

Alternatively, the process can read the ORGUNIT value. Field [14: 15] of the ORGUNIT
value is identical to field [14:15] of the SOURCESTATION value. However, one
difference between ORGUNIT and SOURCESTATION is that ORGUNIT has an extra

86000502-010 2-173

SOURCESTATION (cont.)

2-174

field, [15:01], that indicates whether the originating unit was a remote terminal. Refer
to the ORGUNIT description in this section for details.

One use for the SOURCESTATION task attribute is to enable tasks of WFL jobs
to open remote files. For an example, refer to the description of the STATION task
attribute in this section.

Default

Before a process is initiated, the default SOURCESTATION value is O. At initiation
time, the system assigns the appropriate SOURCESTATION value to the process.
Processes initiated from a MARC or CANDE session receive a SOURCESTATION value
that records the LSN associated with the session.

Inheritance

A process inherits the SOURCESTATION value of its parent.

If a WFL job is initiated from a CANDE or MARC session or from a task descended from
such a session, the WFLjob inherits the SOURCESTATION of the session.

Run-Time Errors

SOURCESTATION ATTRIBUTE IS READ ONLY ON ACTIVE TASK

An MCS attempted to change the SOURCESTATION value of an in-use process. This
error is not fatal, but the requested change is not made.

SOURCESTATION ATTRIBUTE MAY ONLY BE SET BY AN MCS

A process that was not an MCS attempted to assign a value to SOURCESTATION.
The process, if nonprivileged, is discontinued with mSTORYCAUSE = 2
(PROGRAMCAUSEV) and mSTORYREASON = 52 (ONLYMCSMAYSETV).

8600 0502-010

STACKHISTORY

STACKHISTORY
Type String

Units Not applicable

Range See "Explanation" below

Default Null string

Read Time Anytime

Write Time Never

Inheritance None

Overwrite Rules None (read-only)

Host Services Supported

Attribute Number 30

Synonym None

Restrictions None

Explanation

The STACKHISTORY task attribute stores information about the structure ofa
process that terminated abnormally. The STACKHISTORY value is stored regardless of
whether the termination was caused by a fault or by an operator command.

If the process terminates normally, the STACKHISTORY value is a null string. If the
process terminates abnormally, STACKHISTORY stores the address of the statement
that was being executed when the process terminated. STACKHISTORYalso indicates
which procedures had been entered, but had not yet been exited, by storing the
addresses of the statements that invoked these procedures.

The STACKHISTORYvalue has the folloWing format if the program was compiled with
the compiler control option LINEINFO set:

#SSS:AAAA:y#(DDDDDDDD), •••• #SSS:AAAA:y#(DDDDDDDD).

The value has the following format if LINEINFO was not set:

#SSS:AAAA:y,#SSS:AAAA:y, .••• #SSS:AAAA:y.

The elements shown in the preceding examples have the following meanings:

Element

SSS

Colon (:)

AAAA

8600 0502-000

Meaning

The code segment number in hexadecimal form. This field is expanded
to four characters, SSSS, for segment numbers greater than 4095.

A colon, which appears between the code segment number and the code
word address, and between the code word address and the code syllable
number.

The address, in hexadecimal, of the code word within that code
segment. .

continued

2-175

STACKHISTORV (cont.)

2-176

continued

. Element

Y

Comma (,)

Number sign (#)

Ellipsis C ...)

DDDDDDDD

Period (.)

Meaning

The number, in hexadecimal, of the syllable within that code word.

, A comma, which appears after each code address except the rightmost
address.

A blank space, in most cases. However, the blank space is replaced by
an asterisk (*) if the code address refers to MCP code.

Signifies that the same format is repeated for each address.

The line number where the statement occurs in the source file. This
number appears only if the LlNEINFO control option was set when the
program was compiled.

A period terminates the last address in the STACKHISTORY value.

The addresses are listed in reverse historical order. The first address is of the statement
that was being executed when the process terminated. The second address, if any, is of
the most recent procedure invocation. Subsequent addresses are of previous procedure
invocations.

In some cases, one or more of the code addresses in the STACKHISTORY value might
refer to MCP code rather than code in the application program. These references are
possible because system functions and I/O operations invoked by an application process
implicitly result in calls on MCP procedures, which are executed on the application
process stack.

For compilations initiated from CANDE, the LINEINFO option is set by default. The
DDDDDDDD parts of the STACKHISTORYvalue can be compared with the sequence
numbers in the source program to determine what statements are referred to.

For compilations initiated from WFL, LINEINFO is reset by default, but the LIST option
is set. The source code printout that results includes addresses of the form SSS:AAAA:Y
after each statement. The STACKHISTORY value can be compared with these
addresses to determine what statements are referred to. Alternatively, the programmer
could explicitly set LINEINFO and use the sequence numbers instead.

No value is stored for STACKHISTORY if the process incurs a fault but continues
executing normally. For an example of using STACKHISTORY, refer to the A Series
Task Management Programming Guide.

The length of the STACKHISTORY value varies greatly, depending on the number of
procedure invocations that were active when the process terminated and whether the
program was compiled with the LINEINFO option set. To avoid task attribute errors,
you must be careful to read the STACKHISTORY value into an array large enough to
hold that value. The largest possible STACKHISTORYvalue is 400 words (that is, 2400
characters) long.

86000502-000

STACKHISTORY (cont.)

Examples

In ALGOL, the following declaration creates an EBCDIC array large enough to hold any
STACKHISTORYvalue:

EBCDIC ARRAY STACKH[0:2399];

The following ALGOL statement reads the STACKHISTORY value into the array:

REPLACE STACKH BY T.STACKHISTORY;

Run-Time Error

TASK ATTRIBUTE ACCESS FAULT

An attempt was made to read the STACKHISTORY value into an array that is too short.
The reading process is discontinued with HISTORYCAUSE = 2 (PROGRAMCAUSEV)
andIDSTORYREASON = 39 (INFANTICIDEV).

86000502-010 2-177

STACKLIMIT

STACKLIMIT

2-178

Explanation

Type

Units

Range

Default

Read Time

Write Time

Inheritance

Overwrite Rules

Host Services

Attribute Number

Synonym

Restrictions

Integer

Words

o to 64133

6000

Anytime; actual after initiation

Anytime; effective before termination

None

Standard

Supported

50

None

None

The STACKLIMIT task attribute specifies the maximum size to which the process stack
can grow. If the process stack exceeds this limit, the system discontinues the process.
The system checks the STACKLIMIT value only when performing stack stretches; the
system does not consider STACKLIMIT when initiating a process.

For further information about STACKLIMIT, refer to the A Series Task Management
Programming Guide.

Run-Time Errors

ILLEGAL ATIRIBUTE VALUE - TOO LARGE

An attempt was made to assign STACKLIMIT a value larger than 64133. The process, if
nonprivileged, is discontinued with mSTORYCAUSE = 2 (PROGRAMCAPSEV) and
mSTORYREASON = 135 (VALUETOOLARGEV).

STACK OVERFLOW

The process stack exceeded the size specified by the STACKLIMIT task attribute.
The process is discontinued with IflSTORYCAUSE = 3 (RESOURCECAUSEV) and
IflSTORYREASON = 2 (STACKEXCEEDEDV).

86000502-010

STACKSIZE

STACKSIZE
Type Integer

Units Words

Range See below

Default See below

Read Time Anytime

Write Time Before initiation

Inheritance See below

Overwrite Rules Standard

Host Services Supported

Attribute Number 7

Synonym STACK

Restrictions None

Explanation

The STACKSIZE task attribute provides an estimate of the amount of memory that is
required for the process stack. The system inspects this value at initiation to determine .
the amount of memory to be allocated for the process stack at initiation.

Note that STACKSIZE is not intended to return the current process stack size. This
task attribute returns only the stack estimate that was used when the process was
initiated.

The programmer can affect process scheduling, or prevent stack stretches, by modifying
the STACKSIZE before initiating a process. For more information, refer to the A Series
Task Management Programming Guide.

Range

STACKSIZE accepts values in the range 0 to 16384. If a higher value is assigned, no
error results, but the value is converted to 16384.

Default

STACKSIZE defaults to the value of the revised stack estimate,· if there is one. If not,
STACKSIZE defaults to the value of the compiler stack estimate. For details, refer to
the A Series Task Management Programming Guide .

. Inheritance

An internal process inherits the STACKSIZE value of its parent. Other processes do not
inherit the parent's STACKSIZE.

86000502-000 2-179

STACKSIZE (cont.)

2-180

Run-Time Error

STACKSIZE ATTRIBUTE IS READONLY ON ACTIVE TASK

An attempt was made to assign the STACKSIZE task attribute of an in-use process.
The assigning process, ifnonprivileged, is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) and HISTORYREASON = 33 (READONLYONACTIVEV).

86000502-000

STARTTIME

Range

< sta rttime specification>

Type

Units

Range

Default

Read Time

Write Time

Inheritance

Overwrite Rules

Host Services

Attribute Number

Synonym

Restrictions

String

Not applicable

<starttime specification>

Null string

Never

Before initiation

None

See below

Not supported

79

None

Available only in WFL

--r<hour>- : -<m; nute>>-----.,---------------·~
L- + -<hours>- : -<m;nutes~

~-rL-O.N-1-<m-·-o-n~-h->---/--<d-a-y->---/---<-ye-a-r-~.------------;
<J Ull an date>>----------i-l
+ -<days>>-------------I

STARTTIME

The < day >, < days>, <: hour>, < hours>, and < month> values are each a I-digit
or 2-digit number. The < minute>, < minutes> , and < year> values must be 2-digit
numbers. The <julian date> value is a 5-digit number.

Explanation

The STARTTIME task attribute delays initiation of a WFL job until the specified time
and date. The job is compiled immediately, but remains in the job queue until the
specified start time. The job is then eligible for initiation the next time the system
selects ajob from that job queue. The STARTTIME task attribute can be assigned only
toWFLjobs.

A relative start time can be specified by preceding the time or date with a plus sign (+).
Thus, a start time of + 2:00 means that the job should be initiated in two hours.

If no date or relative date is included in the STARTTIME value, today's date is assumed.

If a Julian date is used as the STARTTIME value, the first two digits signify the year and
the last three digits signify the day of the year. Thus, 87293 means day 293 of 1987.

8600 0502-000 2-181

STARTTIME (cant.)

2-182

Overwrite Rules

ST ARTTIME can be assigned only in the following ways, which are listed in order from
most dominant to least dominant:

1. The STARTTIME of ajob in a queue can be assigned or changed by the
STARTTIME system command or the CANDE ?STARTTIME command.

2. A STARTTIME assignment can be appended to the MARC, CANDE, or WFL
START statement that submits a WFLjob.

3. A STARTTIME specification can be included in the job attribute list ofa WFLjob.

Examples

The following example shows a ST ARTTIME assignment in a WFL job:

?BEGIN JOB;
STARTTIME = 11:00;
RUN PROG;

?END JOB

The following is an example of a STARTTIME assignment appended to a CANDE,
MARC, or WFL START statement:

START WFL!TEST;STARTTIME = 19:00

The following is an example of a ST ARTTIME system command:

4698 STARTTIME = 21:00

The following examples show some of the possible formats for the STARTTIME value:

STARTTIME = 14:33;
STARTTIME = + 2:30;
STARTTIME = 23:15 ON + 1;
STARTTIME ~ 10:00 ON 87014;

86000502-000

STATION

STATION
Type Integer

Units Not applicable

Range o to 65535

Default 0

Read Time Anytime

Write Time Anytime

Inheritance See below

Overwrite Rules Standard

Host Services Supported

Attribute Number 20

Synonym INITIATOR

Restrictions None

Explanation

The STATION task attribute stores the logical station number (LSN) of the station to be
assigned any remote files used by this process. If STATION has a nonzero value, then
the TITLE file attribute does not affect selection of a station for remote files. If the
STATION value is zero, then the TITLE file attribute determines the station that is
assigned a remote file.

Note: The LSN associated with any particular station can change over
time. The STATION value is not updated to reflect such changes.
An alternative to STATION is the SOURCENAME task attribute.
SOURCENAME stores the originating station name, which is less
volatile than the LSN.

A process can change the STATION value after initiation. Only remote files opened
after the change to the STATION value are affected by the new value.

If the STATION value specifies an LSN that does not exist, no error occurs until an
attempt is made to open a remote file.

For further information about remote file assignment, refer to the A Series 110
Subsystem Programming Guide.

Inheritance

A process inherits the STATION value of its parent.

The STATION attribute ofa task initiated from a MARC or CANDE session inherits the
negative of the LSN associated with the session. The fact that the value is negative is
not a problem; when the process opens the remote file, it is opened at the originating
session.

86000502-000 2-183 .

STATION (cont.)

2-184

On the other hand, the STATION attribute ofa WFLjob submitted from a MARC or
CANDE session does not inherit the LSN associated with the session. If tasks of the
WFL job open remote files, and those tasks do not use the FILENAME file attribute to
specify a station, then the STATION task attribute should first be explicitly assigned.
The simplest way to do this is to assign STATION the value of the SOURCESTATION
task attribute. SOURCESTATION is a read-only task attribute that stores the
originating station nwnber. Refer to the SOURCESTATION description in this section
for details.

Example

The following task equation can be used to allow a task initiated from a WFL job to open
a remote file:

RUN TASK/READIT;
STATION = MYSELF(SOURCESTATION);

For a related example, refer to the description of the SOURCENAME task attribute.

Run,,:, Time Error

<file name>: UNKNOWN FILE/STATION
REMOTE BACKUP DISK ERROR:<file name>

These two error messages result if a process attempts to open a remote file, the
STATION task attribute is 0, and the FILENAME file attribute does not specify a valid
station. The "REMOTE BACKUP DISK ERROR" message also occurs if a process
attempts to open a remote file and the STATION task attribute stores a nonzero
value that is not a valid LSN. The process is discontinued with HISTORYCAUSE = 9
(NEWIOERRCAUSEV) and HISTORYREASON = 37 (REMOTEBUDISK _ EV) or 38
(UNKNOWNSTA_EV).

86000502-000

STATUS

STATUS
Type Mnemonic

Units Not applicable

Range See "Explanation" below

Default NEVERUSED

Read Time Anytime

Write Time Anytime

Inheritance None

Overwrite Rules See below

Host Services Supported

Attribute Number 12

Synonym None

Restrictions None

Explanation

A process can use the STATUS task attribute to read or assign the process state of
another process or of itself. Some of the STATUS values can be assigned only at certain
times; these limitations are noted in the following table:

Mnemonic
Value

BADINITIATE

TERMINATED

NEVERUSED

SCHEDULED

86000502-000

Integer Value

-2

-1

a

1

Meaning

Initiation of the process failed. Setting this
attribute to BADINITIATE has no effect. If the
current value is BADINITIATE, the only assignment
that has an effect is an assignment of
NEVERUSED.

The process completed execution normally or was
discontinued. Setting the attribute to
TERMINATED discontinues the process with
HISTORYCAUSE = 2 (PROGRAMCAUSEV) and
HISTORYREASON = 39 (lNFANTICIDEV). If the
current value is TERMINATED, the only
assignment that has an effect is an assignment of
NEVERUSED.

No attempt has yet been made to initiate the
process. Assigning this value reinitializes the task
variable, restoring all task attribute values to their
defaults. Assigning this attribute also releases the
save memory for the task variable (lOa to 200
words). This value can be set only when the
current value is NEVERUSED, TERMINATED, or
BADINITIATE. If the current value is NEVERUSED,
assignments of any other STATUS values have no
effect.

The process is scheduled. Setting this value has
no effect.

continued

2-185

STATUS (cant.)

2-186

continued

Mnemonic
Value

ACTIVE

SUSPENDED

FROZEN

GOINGAWAY

Integer Value

2

3

5

6

Meaning

The process is active. Setting the attribute to
ACTIVE has no effect unless the process is
suspended. If the process is suspended, then
assigning a value of ACTIVE resumes execution of
the process. If the process is a frozen permanent
library, then assigning a value of ACTIVE thaws the
library.

The process is suspended. Setting the attribute to
SUSPENDED suspen~s the process.

The process is a frozen library. Setting this value
has no effect.

The process is a library that is thawing. Assigning
this value to a frozen permanent library causes the
library to thaw and prevents any new user
processes from linking to the library.

N ate that assignments to the STATUS task attribute might not affect the process
immediately. For example, a critical block exit error can occur if the STATUS attribute
is used to terminate a task and the critical block is exited before that STATUS change
has taken effect. The only assignment that has immediate effect is an assignment of
NEVERUSED.

Whenever the value of the STATUS task attribute changes, the system causes
the EXCEPTIONEVENT of the EXCEPTIONTASK of the process. For further
information, refer to the descriptions of these attributes in this section.

Overwrite Rules

The STATUS task attribute is not inherited, and syntax errors result from any attempt
to assign the STATUS task attribute to an object code file or to assign STATUS in
a task equation. The STATUS task attribute ofa task variable that is not in use is
either NEVERUSED, TERMINATED, or BADINITIATE. When the system initiates a
process, the system automatically overwrites the previous STATUS value and assigns a
value that reflects the success or failure of the initiation: ACTIVE, SCHEDULED, or
BADINITIATE.

Run-Time Error

INITIATE ACTIVE TASK

An attempt was made to set the STATUS attribute of an in-use process to
NEVERUSED. The assigning process, if nonprivileged, is discontinued with
mSTORYCAUSE = 2 (PROGRAMCAUSEV) and HISTORYREASON = 3
(INITACTIVETASKV).

86000502-000

STOPPOINT

STOPPOINT
Type Real

Units Not applicable

Range See uExplanation" below

Default 0

Read Time Anytime

Write Time Never

Inheritance None

Overwrite Rules None (read-only)

Host Services Supported

Attribute Number 18

Synonym None

Restrictions None

Explanation

The STOPPOINT task attribute reports the point at which the process terminated
abnormally. If the abnormal termination was due to a fault, the type of fault is also
reported. If the process terminates normally, the STOPPOINT value is zero.'

The STOPPOINT value is divided into the following fields:

Field

[47:08]

[35:03]

[32:13]

[13:01]

[12:13]

Meaning

If the process encountered a fault, this field stores the type of fault. The
value is the same as that of the HISTORYREASON task attribute when
the value of the HISTORYCAUSE attribute is 4 (FAULTCAUSEV). Refer to
the description of the HISTORYREASON attribute in this section for a list
of these values.

This field stores the index of the syllable in the code word where process
execution terminated.

This field stores the index of the word in the code segment where
process execution terminated.

If reset, this bit indicates that the process was executing MCP code when
it terminated. If set, the process was not executing MCP code at
termination.

This field stores the index of the code segment where process execution
ended.

For details about how to access these fields, refer to "Accessing Task Attributes at the
Bit Level" in Section 1, "Accessing Task Attributes."

The code segment, code word, and code syllable indexes appear in source program
listings created by the $SET LIST compiler option. For an example of such a
listing, refer to the discussion of process history in the A Series Task Management
Programming Guide.

8600 0502-000 2-187

STOPPOINT (cont.)

2-188

Other information about a process that terminates abnormally is recorded in the
STACKHISTORY task attribute, which is described in this section.

86000502-000

SUBSPACES

SUBSPACES

Note: The SUBSPACES task attribute has no meaning on systems running
the Mark 3.9 system software release or a later release. The system
displays a deimplementation warning message when a process
attempts to use this attribute.

86000502-000 2-189

SUBSYSTEM

SUBSYSTEM

2-190

Note: The SUBSYSTEM tq.sk attribute has no meaning on systems
running the Mark 3.9 system software release or a later release.
The system displays a deimplementation warning message when a'
process attempts to use this attribute.

86000502-000

SUPPRESSWARNING

SUPPRESSWARNING
Type String

Units Not applicable

Range <suppresswarning list>

Default Null string

Read Time Anytime

Write Time Anytime

Inheritance None

OVerwrite Rules See below

Host Services Not supported

Attribute Number 110

Synonym None

Restrictions None

Range

<suppresswarning list>'

NONE--~ ~
ALL

I IE <warni ng number>
hyphen~ ~hyphen>__<warning number:-J

<warning number>

An unsigned integer in the range 1 through 29999.

Explanation

The SUPPRESSWARNING task attribute can be used to suppress run-time warning
messages for a process. Most of these messages are warnings that the process has
just used a feature that is scheduled for deimplementation on a future release. These
messages might not be of interest to a typical user or system operator, and it might be
desirable to suppress their display. A suppressed warning does not appear at the ODT or
in CANDE or MARC sessions. However, it does appear in the system log.

The programmer can suppress particular types of run-time warning messages by
assigning SUPPRESSWARNING a set of warning numbers or warning number ranges.
Each warning number corresponds to a particular run-time warning message. The
warning number for each warning message is included in the text of that message. Thus,
the following message corresponds to warning number 13:

WARNING 13: DISK FILE HEADER CHANGES. SEE 3.7 MCP D-NOTE 6638

8600 0502--010 2-191

SUPPRESSWARNING (cant.)

2-192

For a list of warning messages and the warning numbers corresponding to them, refer to
the A Series System Messages Support Reference Manual.

Warning messages can also be suppressed by the system warning suppression value. An
operator can use the SUPPRESSW ARNING (Suppress Warning) system command
to define this value, which affects all processes on the system. A particular warning
is suppressed for a process if either the system warning suppression value or the
SUPPRESSW ARNING task attribute indicates that the warning should be suppressed.
However, the system warning suppression value and the SUPPRESSW ARNING task
attribute value are maintained independently and can be completely different.

Note: The SUPPRESSWARNING option of the CO (Controller
Options) system command affects messages warning of system
command deimplementations. This option does not affect
run-time warning messages for processes and is not related to the
SUPPRESSWARNING task attribute.

SUPPRESSW ARNING can be assigned a list of numbers or number ranges. A number
range consists of two numbers separated by a hyphen. For example, assigning a value
of 1,3-5 causes warning messages 1, 3, 4, and 5 to be suppressed for the process. If
a SUPPRESSW ARNING assignment begins with a hyphen, it is interpreted as a
minus sign and deletes warning types from the SUPPRESSW ARNING list. Thus, if
'SUPPRESSWARNING has a value of 1,4,8-10, then an assignment of -1,9 results in a
SUPPRESSW ARNING value of 4,8,10.

The programmer can suppress the display of all run-time warning messages for a process
by assigning SUPPRESSW ARNING a value of ALL. The system translates this into the
value 1-29999, which is returned if a statement reads the attribute thereafter.

The programmer can clear the SUPPRESSW ARNING value by assigning a
value of NONE. If a process reads SUPPRESSWARNING after this assignment,
SUPPRESSW ARNING returns a null string. In this case, the only warnings suppressed
are those specified by the system warning suppression value.

The SUPPRESSW ARNING value does not prevent warnings from being recorded by
the TASKWARNINGS task attribute. For details, refer to the TASKWARNINGS
description in this section.

The SUPPRESSW ARNING task. attribute value of a library process also affects any user
processes while they are executing procedures from that library.

Overwrite Rules

When an ALGOL or COBOL74 program assigns a set of warning numbers to
SUPPRESSWARNING, the numbers are added to the current SUPPRESSWARNING
value. The system incorporates the warning numbers in ascending order and combines
them into ranges where possible. For example, suppose SUPPRESSWARNING
has a value of 1,4,8-10. If a statement assigns a new value of 7,3, the resulting
value is 1,3-4,7-10. A program can remove warning numbers by assigning
SUPPRESSW ARNING a value that begins with a hyphen or a value of NONE.

86000502-010

SUPPRESSWARNING (cont.)

However, when SUPPRESSW ARNING is assigned from CANDE, MARC, or WFL, the
current SUPPRESSW ARNING value is discarded and changed to exactly the value
assigned. This is true regardless of whether the assignment is made by a task equation,
a task attribute assignment to a task variable, or a MODIFY statement that assigns task
attributes to an object code file.

Run-Time Error

SUPPRESSWARNING ATTRIBUTE INCORRECT SYNTAX

A process attempted to assign SUPPRESSW ARNING a value that did not follow the
suppresswarning list syntax. The assigning process, if nonprivileged, is discontinued
with HISTORYCAUSE = 2 (PROGRAMCAUSEV) and mSTORYREASON = 131
aNCORRECTSYNTAXV).

86000502-010 2-193

SWl through SW8

SWI through SW8

2-194

Type Boolean

Units Not applicable

Range TRUE, FALSE

Default FALSE

Read Time Anytime

Write Time Anytime

Inheritance From parent

Overwrite Rules Standard

Host Services Supported

Attribute Numbers 84 through 91

Synonym None

Restrictions None

Explanation

The eight task attributes named SW1, SW2, SW3, SW4, SW5, SW6, SW7, and SWB can
each be used to store a Boolean value. The values of these task attributes have no effect
on the process. They simply serve as holders for any Boolean values the user wishes to
store.

You can design processes to communicate with each other by setting and reading
these task attributes. For an overview of the use of task attributes in interprocess
communication, refer to the A Series Task Management Programming Guide.

COBOL74 provides a special syntax for accessing these task attributes. A statement in
the SPECIAL-NAMES paragraph can assign special condition names, which can be used
later to access the task attribute value.

In RPG, the SWl through SWB task attributes can be accessed by way of the external
indicators Ul through. UB. These external indicators can be used to condition
various operations so that they are only performed when the corresponding task
attribute is TRUE. For details, refer to the A Series Report Program Generator (RPG)
Programming Reference Manual, Volume 1: Basic Implementation.

86000502-010

SWl through SW8 (cont.)

Example

The following COBOL74 program accesses the SWI task attribute in two ways:

100 IDENTIFICATION DIVISION.
110 ENVIRONMENT DIVISION.
120 CONFIGURATION SECTION.
130 SPECIAL-NAMES.
140 SW1 ON STATUS IS SWITCH-ONE-ON,
150 OFF STATUS IS SWITCH-ONE-OFF.
160 DATA DIVISION.
170 WORKING-STORAGE SECTION.
180 PROCEDURE DIVISION.
190 START-HERE SECTION.
200 PI.
210 IF SWITCH-ONE-OFF DISPLAY "SWITCH ONE IS OFF".
220 IF ATTRIBUTE SW1 OF MYSELF = VALUE FALSE
230 DISPLAY "SWITCH ONE IS OFF.II
240 STOP RUN.

First, SWI is assigned condition names at lines 140 and 150. The statement at line 210
interrogates the SWI value by condition name. The statement at line 220 interrogates
SWl by way of the normal task attribute syntax.

86000502-010 2-195

TAOS

TAOS

2-196

Type Boolean

Units Not applicable

Range TRUE, FALSE

Default FALSE

Read Time Anytime

Write Time Before initiation

Inheritance See below

Overwrite Rules Standard

Host ~ervices Not supported

Attribute Number 94

Synonym None

Restrictions None

Explanation

The TADS task attribute invokes the Test and Debug System (TADS) to cause a
program to run in test mode. The program must be written in ALGOL, C, COBOL74,
COBOL85, or FORTRAN77. The TADS task attribute is ignored unless the program
was compiled with the TADS compiler control option set to TRUE.

For directions about how to use TADS, refer to the following manuals:

• A Series .ALGOL Test and Debug System (TADS) Programming Guide

• A Series C Test and Debug System (TADS) Programming Reference Manual

• A Series COBOL ANSI-74 Test and Debug System (TADS) Programming Guide

• A Series COBOL ANSI-85 Test and Debug System (TADS) Programming Reference
Manual

• A Series FORTRAN77 Test and Debug System (TADS) Programming Guide

• A Series NEWP Programming Reference Manual

Inheritance

An internal process inherits the TADS value of its parent. This inheritance overrides
any TADS value explicitly assigned to the internal process. An external process does not
inherit the TADS value of its parent.

86000502-010

TAOS (cont.)

Run-Time Error

TAOS ATTRIBUTE IS READONLY ON ACTIVE TASK

An attempt was made to assign the TADS attribute of an in-use process. The
assigning process, if nonprivileged, is discontinued with mSTORYCAUSE = 2
(PROGRAMCAUSEV) and mSTORYREASON = 33 (READONLYONACTIVEV).

8600 0502-010 2-196A

TADS (cont.)

2-1968 86000502-010

TANKING

TANKING
Type Mnemonic

Units Not applicable

Range See "Explanation" below

Default UNSPECIFIED

Read Time Anytime

Write Time Anytime

Inheritance None

Overwrite Rules Object code file dominant

Host Services Not supported

Attribute Number 60

Synonym None

Restrictions None

Explanation

The TANKING task attribute specifies the default tanking mode for remote files used
by the process. The system uses this default tanking mode for any remote files whose
TANKING file attribute has a value of UNSPECIFIED.

The TANKING task attribute values are as follows:

Mnemonic
Value

UNSPECIFIED

NONE

SYNC

ASYNC

Integer Value

o

1

2

3

Meaning

The remote file is not tanked unless the MCS
overrides this value when assigning the file.

The remote file is not tanked. The MCS cannot
override this value.

The remote file is tanked. When the remote file is
closed, the process does not continue until all
tanked output has been completed. The MCS
cannot override the SYNC value.

The remote file is tanked. The process can
continue past the file close, and even terminate,
without waiting for the tanked output to be
completed. The system continues to transfer
messages from the tank file to the output queue
until the tank file is empty. The MCS cannot
override the ASYNC value.

For further information about tanking, refer to the A Series Task Management
Programming Guide.

86000502-000 2-197

TANKING (cont.)

2-198

Run-Time Error

TANKING ATTRIBUTE INCORRECT SYNTAX

An attempt was made to assign TANKING a value less than 0 or greater than 3.
The assigning process, if nonprivileged, is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) and HISTORYREASON = 131 (INCORRECTSYNTAXV).

86000502-000

TARGET

TARGET
Type Integer

Units Not applicable

Range o through 1319412

Default 0

Read Time Anytime

Write Time Anytime

Inheritance None

Overwrite Rules Standard

Host Services Not supported

Attribute Number 6

Synonym TARGETIIME

Restrictions None

Explanation

The TARGET task attribute stores any integer value that is assigned to it by a user. The
value of this attribute has no effect on the process, nor does it report any information
about the process. Rather, it is provided for use in communicating information between
processes. For an overview of the use of task attributes in interprocess communication,
refer to the A Series Task Management Programming Guide.

The value of TARGET formerly had some effect on process scheduling. The operating
system no longer uses this attribute for that purpose.

Run-Time Error

TASK ATTRIBUTE ACCESS FAULT

An attempt was made to assign TARGET a value greater than its maximum. The
assigning process, if nonprivileged, is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) and mSTORYREASON = 39 (INF ANTICIDEV).

86000502-000 2-199

TASKERROR

TASKERROR

2-200

Type Real

Units Not applicable

Range See "Explanation" below

Default 0

Read Time Any time

Write Time Never

Inheritance None

Overwrite Rules None (read-only)

Host Services Not supported

Attribute Number 117

Synonym None

Restrictions None

Explanation

The TASKERROR task attribute Indicates whether an error resulted from the most
recent attempt to access a task attribute of this process. If an error did result, the
TASKERROR value also Indicates which task attribute was beIng accessed, and the type
of error that occurred.

The TASKERROR task attribute serves a purpose similar to the ERROR task attribute.
However, TASKERROR has the advantage of providing more information about the
error that occurred. Another advantage of usIng T ASKERROR is that the value can be
read repeatedly, whereas the ERROR value is erased each time it is read.

Further, a program can use the T ASKERROR value as Input to the
ATTRIBUTEMESSAGE procedure, which translates the value into a textual
error message. For information about ATTRIBUTEMESSAGE, refer to "Using
WFLSUPPORT to Access Task Attributes" In Section 1, "AccessIng Task Attributes."

86000502-000

· TASKERROR (cant.)

The T ASKERROR value is divided into the following fields:

86000502-000

Field

[47:08]

[39:16]

[23:16]

[07:05]

[02:01]

[01:01]

[00:01]

Value

o

1

6

(Various)

(Various)

o
o

1

o

o

1

Meaning

If field [00:01] is 1, then an error occurred in
accessing a task attribute other than FILECARDS
or LIBRARY. Field [39:16] stores the number of
the task attribute that was used· incorrectly.

If field [00:01] is 0 (zero), then there was no task
attri bute error.

An error occurred in accessing the FILECARDS
task attribute. Field [39:16] stores the number of
the file attribute that was assigned incorrectly in
FILECARDS. For a list of file attributes in numerical
order, refer to the description of the ATTYPE file
attribute in the A Series File Attributes
Programming Reference Manual.

An error occurred in assigning the LIBRARY task
attribute. Field [39:16] stores the number of the
library attribute that was assigned incorrectly in
the LIBRARY task attribute. For a list of· library
attributes in numerical order, refer to Table 2-5,
"Library Attributes by Number."

The number of the task attribute, file attribute, or
library attribute that was assigned incorrectly. For
details about the meaning of this field, refer to the
discussion of field [47:08].

The error code. If the value is in the range 1
through 999, it corresponds to the
HISTORYREASON task attribute value. For an
explanation of values in this range,refer to the
HISTORYREASON task attribute description in this
section.

If the value is 1000 or greater, it corresponds to
the HANDLEATIRIBUTES error number. For an
explanation of values in this range, refer to
Table 1-2, "HANDLEATIRIBUTES Error
Numbers."

An unused field. Its value is always 0 (zero).

The validity bit. This value indicates that fields
[47:08] and [39:16] do not contain valid values.

Fields [47:08] and [39:16] contain valid values.

An unused field. Its value is always 0 (zero).

The exception bit. This value indicates that no
error or warning occurred, and none of the
previously defined fields are used.

The exception bit. If 1, an error or warning
occurred, and the fields defined previously are
used. If 0 (zero), no error or warning occurred, and
none of the previously defined fields are used.

2-201

TASKERROR (cont.)

2-202

For details about how to access these fields, refer to "Accessing Task Attributes at the
Bit Level" in Section 1, "Accessing Task Attributes."

Number

o
1

2

3

l:l-

6

9

10

11

Examples

Table 2-5. Library Attributes by Number

Name

INTNAME

TITLE

LlBPARAMETER

FUNCTIONNAME

LlBACCESS

FUNCTIONDEFINED

LlBERROR

LlBVALUE

INHERITNWSTATUS

The following are examples of ALGOL statements that read the values of individual
fields of the TASKERROR task attribute. The assignments are all made to real variables
(named BUF, GENERAL_TYPE, ATTRIBUTE _NUMBER, and so on).

BUF := T.TASKERROR;
GENERAL_TYPE: = BUF. [47 :8] ;
ATTRIBUTE_NUMBER := BUF.[39:16];
ERROR_NUMBER := BUF.[23:16];
VALIDITY_BIT := BUF.[2:1];
WARNING_BIT := BUF.[l:l];
EXCEPTION_BIT := BUF.[0:1];

The following are examples of COBOL74 statements that read the values of individual
fields of the TASKERROR task attribute. The assignments are all made to 77-level
variables of type REAL (named BUF, GENERAL-TYPE, ATTRIBUTE-NUMBER, and
so on).

MOVE ATTRIBUTE TASKERROR OF TASK-VAR-1 TO BUF.
MOVE BUF TO GENERAL-TYPE [47:07:08].
MOVE BUF TO ATTRIBUTE-NUMBER [39:15:16].
MOVE BUF TO ERROR-NUMBER [23:15:16].
MOVE BUF TO VALIDITY-BIT [02:00:01].
MOVE BUF TO WARNING-BIT [01:00:01].
MOVE BUF TO EXCEPTION-BIT [00:00:01].

WFL allows TASKERROR to be read as a real value, but does not provide any syntax for
reading the individual fields within the TASKERROR value.

86000502-000

TASKERROR (cont.)

Run-Time Errors

TASKERROR ATTRIBUTE IS READONLY

An attempt was made to assign a value to the TASKERROR attribute. The assigning
process is discontinued with HISTORYCAUSE = 2 (PROGRAMCAUSEV) and
HISTORYREASON = 9'(ATTREADONLYV).

86000502-000 2-203

TASKFILE

TASKFILE

2-204

Explanation

Type

Units

Range

Default

Read Time

Write Time

Inheritance

Overwrite Rules

Host Services

Attribute Number

Synonym

Restrictions

File

Not applicable

See "Explanation" below

See below

Before termination; accurate only while
process is in use

Never

None

WFL file equations only

Not supported

32

None

Not available in APLB

The TASKFILE task attribute is used to access the task file associated with a process.
The task file is a printer backup file that stores any program dumps generated by
that process. For more information about program dumps, refer to the A Series Task
Management Programming Guide.

The main use of the T ASKFILE task attribute is to allow a process to write comments
to the task file before the process generates a dump. TASKFILE can also be used
in statements that close the task file or interrogate the file attributes of the task
file. TASKFILE cannot be used to assign file attributes to the task file, although
the FILECARDS task attribute can be used for this purpose. For information about
assigning file attributes to the task file, refer to the discussion of process history in the
A Series Task Management Programming Guide.

A process can access its own task file or the task file of any of its ancestors. For
example, a task can access its job's task file by way of the MYJOB task variable and the
T ASKFILE task attribute.

A process cannot access the task file of any descendant, sibling, or cousin process or of
any process outside its own process family.

86000502-000

TASKFILE (cant.)

Default

By default, the T ASKFILE attribute defines a file with the following attributes:

BACKUPKIND = DISK
BUFFERS = 1
INTMODE = EBCDIC
INTNAME = TASKFILE
KIND = PRINTER
LABELTYPE = OMITTED
MAXRECSIZE = 22
MYUSE = OUT

When the task file is opened, the system titles it according to the standard printer
backup file titling convention discussed in the A Series Task Management Programming
Guide.

Examples.

The following ALGOL statements cause two program dumps and write a different
comment to each program dump. The CLOSE statement causes the program dumps to
be stored in two separate backup files:

WRITE (MYSELF.TASKFILE,//,IIHI THERE, DUMP 111);
PROGRAMDUMP;
CLOSE (MYSELF.TASKFILE);
WRITE (MYSELF.TASKFILE,//,IIHI THERE, DUMP 211);
PROGRAMDUMP;

The following ALGOL statements interrogate file attributes of the task file:

R := MYSELF.TASKFILE.KIND;
IF MYSELF.TASKFILE.OPEN THEN

Run-Time Errors

The following errors are always fatal, even if the accessing process is privileged, an MCS,
or BNA Host Services.

NON ANCESTRAL TASKFILE

A process attempted to access the task file of another process that is not an ancestor of
the accessing process. The accessing process is discontinued with mSTORYCAUSE = 2
(PROGRAMCAUSEV) and HISTORYREASON = 12 (NONANCESTRALTASKFILEV).

TASKFILE ATIRIBUTE IS READONLY

An attempt was made'to assign a value to T ASKFILE. The assigning process
is discontinued with HISTORYCAUSE = 2 (PROGRAMCAUSEV) and
HISTORYREASON = 9 (ATI'READONLYV).

86000502-000 2-205

TASKLIMIT

TASKLIMIT

2-206

Type Integer

Units Descendant tasks

Range o to 31

Default o (unlimited)

Read Time Anytime

Write Time Anytime

Inheritance See below

Overwrite Rules Standard

Host Services Not supported

Attribute Number 58

Synonym None

Restrictions None

Explanation

The TASKLIMIT task attribute limits the number of descendants ajob can have. The
value of the job's TASKLIMIT is automatically decremented by 1 each time a descendant
task is initiated. When TASKLIMIT has been decremented to 0, the initiation of any
further descendants causes the initiating process to be discontinued.

Thejob's TASKLIMIT is also decremented by 1 when an independent process is initiated
by the job or one of the job's descendants. However, descendants of the independent
process do not affect the originaljob's TASKLIMIT.

The limit applied by TASKLIMIT is cumulative. That is, it limits the total number of
descendants a job can have during its history, not only the number of descendants a job
can have at the same time.

IfTASKLIMIT has not been set, there is no limit on the number of descendants ajob
can have, and reading TASKLIMIT returns a value of O. However, explicitly assigning 0
to TASKLIMIT sets a limit of 0 on the number of descendants.

TASKLIMIT has no effect when assigned to a task. It does not limit the number of
descendants the task can have.

Inheritance

If the TASKLIMITattribute is set for ajob queue, it is inherited by all WFLjobs run out
of that job queue. This is true even if the WFL job attribute list specifies a different
T ASKLIMIT value. However, after initiation the WFL job can assign TASKLIMIT a
different value.

86000502-000

TASKLIMIT (cont.)

Run-Time Error

TASKLIMIT EXCEEDED

The process attempted to initiate a task when the TASKLIMIT value ofMYJOB was
already decremented to O. The process is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) and HISTORYREASON = 58 (TASKLIMITEXCEEDEDV).

86000502-000 2-207

TASKSTRING

TASKSTRING

2-208

Type String

Units Not applicable

Range <taskstring specification>

Default Null

Read Time Anytime

Write Time Before initiation

Inheritance None

Overwrite Rules Standard

Host Services Not supported

Attribute Number 113

Synonym None

Restrictions None

Range

<taskstring specification>

A string of up to 255 EBCDIC characters of which the last must be a null character.

Explanation

The T ASKSTRING task attribute stores any string value that is assigned to it by a user.
The value of this attribute has no effect on the process nor does it report any information
about the process. Rather, it is provided for use in communicating information between
processes.

For an overview of the use of task attributes such as TASKSTRING in interprocess
communication, refer to the A Series Task Management Programming Guide.

Examples

In ALGOL, the following statement could be used to assign TASKSTRING a value of
$SETLIST:

REPLACE T1. TASKSTRING BY "$SET LIST" 48"00";

In COBOL74, the equivalent statement has the following form:

CHANGE ATTRIBUTE TASKSTRING OF Tl TO "$SET LIST" •.

In WFL, the assignment appears as follows:

Tl(TASKSTRING = "$SET LIST");

86000502-000

TASKSTRING (cont.)

Run-Time Error

TASKSTRING ATTRIBUTE INCORRECT SYNTAX

An attempt was made to assign a TASKSTRING value that was more than 255
characters long or that was not terminated by a null character. The assigning
process is discontinued with HISTORYCAUSE = 2 (PROGRAMCAUSEV) and
HISTORYREASON = 131 (INCORRECTSYNTAXV).

8600 0502-000 2-209

TASKVALUE

TASKVALUE

2-210

Type Real

Units Not applicable

Range -4.31E68 to +4.31E68

Default 0

Read Time Anytime

Write Time Anytime

Inheritance None

Overwrite Rules Standard

Host Services Supported

Attribute Number 9

Synonym VALUE

Restrictions None

Explanation

The TASKV ALUE task attribute stores any real value that is assigned to it by a user.
The value of this attribute has no effect on the process nor does it report any information
about the process. Rather, it is provided for use in communicating information between
processes.

An operator can change the TASKVALUE of an in-use process with the <mix number>
HI < integer> form of the HI (Cause EXCEPTIONEVENT) system command.

For an overview of the use of task attributes in interprocess communication, refer to the
A Series Task Management Programming Guide.

8600 0502-000

TASKWARNINGS

TASKWARNINGS
Type String

Units Not applicable

Range <task warnings list>

Default Null string

Read Time Only while in-use

Write Time Never

Inheritance None

Overwrite Rules None (read-only)

Host Services Not supported

Attribute Number 109

Synonym None

Restrictions None

Range

<task warnings list>

Explanation

The TASKWARNINGS task attribute records what run-time warning messages have
been issued for the object code file used by the process. Most run-time warning
messages notify the programmer that the process uses a feature that has been scheduled
for deimplementation on a future release. A programmer can use these messages to
determine what changes need to be made to a program. so it can be run on a new release.

The TASKWARNINGS value is the same as the value of the WARNINGS file attribute
of the object code file. The value consists of either a null string or a series of warning
numbers. Each warning number represents a particular run-time warning message. The
warning number for each warning message is included in the text of that message. Thus,
the following message corresponds to warning number 13:

WARNING 13: DISK FILE HEADER CHANGES. SEE 3.7 MCP D-NOTE 6638

For a list of warning messages and the warning numbers corresponcling to them, refer to
the A Senes System Messages Support Reference Manual.

In the TASKW ARNINGS value, warning numbers are separated by commas and listed
in ascending order.

The TASKW ARNINGS value includes warnings that were issued for other
processes that were instances of this same object code file, or that were executing a

86000502-010 2-211

TASKWARNINGS (cont.)

2-212

procedure from this object code file when the warning occurred. For example, the
T ASKW ARNINGS attribute of a library process reflects any warnings that were issued
for user processes while they were executing procedures exported by the library.

If the TASKW ARNINGS attribute of the MYSELF task variable is read within a
library program, it returns either the warnings stored in the library object code file
or those stored in the user process object code file, depending on the context. If
T ASKW ARNINGS is read in an exported library procedure, it returns warnings stored
in the user process object code file. IfTASKWARNINGS is read elsewhere in the library,
such as by a statement executed before the library freezes, then TASKW ARNINGS
returns warnings stored in the library object code file.

The TASKW ARNINGS value includes all warnings that were issued for this object code
file, including any that were suppressed by the SUPPRESSW ARNING task attribute
or the system warning suppression value. For details, refer to the description of
SUPPRESSWARNING in this section.

Run-Time Error

CODE FILE MUST BE ACTIVE

An attempt was made to read the TASKW ARNINGS task attribute of a process
that is not in use. The accessing process, if nonprivileged, is discontinued with
mSTORYCAUSE = 2 (PROGRAMCAUSEV) and mSTORYREASON = 116
(CODEFILENOTACTIVEV).

86000502-010

TEMPFILELIMIT

TEMPFILELIMIT
Type Real

Units Disk Megabytes

Range -1 to about 4.31 E68

Default -1 (Unlimited)

Read Time Anytime

Write Time Anytime

Inheritance From parent

Overwrite Rules See below

Host Services Supported

Attribute Number 118

Synonym None

Restrictions None

Explanation

The TEMPFILELIMIT task attribute specifies the maximum amount of disk space
that can be allocated at one time to temporary disk files owned by the process. For an
introduction to temporary files, refer to the A Series Task Management Programming
Guide.

The amount of disk space used for temporary files increases when a process creates a
new temporary disk file or increases the size of an existing temporary disk file. If one of
these operations causes the process to exceed the TEMPFILELIMIT value, the system
issues an I/O error for the process, and the I/O operation is not performed.

The TEMPFILELIMIT value is enforced only when the disk resource control system is
active, and is never enforced for library maintenance processes.

TEMPFILELIMIT returns a value of -1 if it is read and no value was previously assigned
to it. A value of -1 means that there is no limit on temporary file usage.

For more information about the disk resource control system, refer to the A Series
Disk Subsystem Administration and Operations Guide. A related task attribute,
TEMPFILEMBYTES, is discussed later in this section.

Overwrite Rules

When a process is initiated, the system assigns a TEMPFILELIMIT value that is the
minimum of the following values:

• The value of the TEMPFILELIMIT usercode attribute, if this attribute has been
defined for the usercode of this process

• The TEMPFILELIMIT value inherited from the parent, as long as it is not unlimited
(-1)

8600 0502-000 2-213

TEMPFILELIMIT (cant.)

2-214

• Any TEMPFILELIMIT value that would result from standard overwrite rules, for
example, because of a previous TEMPFILELIMIT assignment to the task variable or
the object code file

Once a process is running, the current value of TEMPFILELIMIT can never be
increased. An assignment that attempts to increase the TEMPFILELIMIT value is
ignored and the TEMPFILELIMIT value remains unchanged. On the other hand,
TEMPFILELIMIT can be assigned a lower value at any time.

Run-Time Error

FILE <file name> I/O ERROR: ATTEMPT TO EXCEED TEMPORARY FILE LIMIT

The process requested more space for temporary disk files than was allowed by the
TEMPFILELIMIT attribute. The I/O operation fails. If the process has specified error
handling for the I/O statement that caused the error, then the process can proceed
normally. Otherwise, the process is discontinued.

86000502-000

TEMPFILEMBYTES

TEMPFILEMBYTES
Type Real

Units Disk megabytes

Range o to about 4.31 E68

Default 0

Read Time Anytime

Write Time Never

Inheritance None

Overwrite Rules None (read-only)

Host Services Supported

Attribute Number 119

Synonym None

Restrictions None

Explanation

The TEMPFILEMBYTES task attribute records the amount of disk space currently
allocated to temporary files owned by the process. For an introduction to temporary

. files, refer to the A Series Task Management Programming Guide.

The information returned by TEMPFILEMBYTES is valid only when the disk resource
control system is active and is continuously active during the entire life of the process.
Temporary files created by library maintenance processes and certain other system
functions are not included in the value returned by this attribute.

For more information about the disk resource control system, refer to the A Series Disk
Subsystem Administration and Operations Guide.

Run-Time Error

TEMPFILEMBYTES IS READONLY

A process attempted to assign a value to the TEMPFILEMBYTES attribute. The
assigning process, if nonprivileged, is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) and HISTORYREASON = 9 (ATTREADONLyv).

86000502-000 2-215

TYPE

TYPE

2-216

Type Mnemonic

Units Not applicable

Range See "Explanation" below

Default PROCESS

Read Time Anytime; accurate while in use

Write Time Never

Inheritance None

Overwrite Rules None (read-only)

Host Services Supported

Attribute Number 11

Synonym None

Restrictions None

Explanation

The TYPE task attribute returns information about whether the process is synchronous
or asynchronous, and dependent or independent. The following are the possible values
and their meanings:

Mnemonic
Value Integer Value Meaning

PROCESS 0 Asynchronous dependent process

CALL 1 Synchronous dependent process

RUN 2 Non-WFL independent process

JOBSTACK 3 WFLjob

Read Time

The TYPE attribute can be read at any time. However, the value is reset to PROCESS
when the process terminates, regardless of what the value was when the process was in
use.

86000502-000

USERCODE

USERCODE

Range

< usercode assignment>

Type

Units

Range

Default

Read Time

Write Time

Inheritance

Overwrite Rules

Host Services

Attribute Number

Synonym

Restrictions

-<usercode>
L / -<password~

Explanation

String

Not applicable

<usercode assignment>

Null string

Anytime

Anytime

See below

Standard

Supported

8

None·

None

The USERCODE task attribute specifies the usercode under which the process is run.
The usercode is a major factor in determining the privilege status of the process and
what files can be accessed by the process. For information about usercodes and privilege,
refer to the A Series Task Management Programming Guide.

A USERCODE assignment must include a password unless the usercode does not
have a password defined in the USERDATAFILE. However, when a process reads the
USERCODE task attribute, the password is omitted from the value returned.

When a process is initiated, the system performs validation to determine whether the
USERCODE value for a process is compatible with the ACCESSCODE task attribute
value and the CHARGE task attribute value. The following is an outline of this
validation:

1. The system checks to see that a USER entry exists for the usercode in the
USERDATA file and that the password included in the USERCODE assignment is
valid. Otherwise, the system discontinues the process.

2. The system performs the accesscode validation that is explained in the
ACCESSCODE task attribute description in this section.

3. The system performs the charge code validation that is explained in the CHARGE
task attribute description in this section.

86000502-000 2-217

USERCODE (cant.)

2-218

4. For a WFL job, the WFL compiler performs both the accesscode and charge code
validation at compile time. The WFL compiler issues a syntax error if either of
these validations fail. (A WFL job can receive an ACCESSCODE or CHARGE value
at compile time either through inheritance or through an assignment in the job
attribute list.)

If the USERCODE value of an in-use process is changed, the system performs only
the first of the above types of validation. The process retains its current CHARGE
value, even if it is one that would not normally be permitted for the new usercode. If
the ACCESSCODE value is not allowed for the new usercode, the system changes the
ACCESSCODE value to a null string. In either case, the process continues running
normally.

If USERCODE is assigned a null string before initiation, the null value is overridden by
inheritance from the parent at initiation time. If the USERCODE of an in-use process is

. assigned a null string, the process becomes a nonusercoded process and the value of the
ACCESSCODE task attribute is also cleared. A nonusercoded process receives a special
security status, as described in the A Series Task Management Programming Guide.

Only a privileged process, an MCS, or a compiler can assign a null string to the
USERCODE of an in-use process. If a nonprivileged process attempts to assign a null
string to the usercode of an in-use process, the nonprivileged process is discontinued
with a security violation.

For processes initiated from a session, changing the usercode has the side effect of
preventing process messages from being displayed at the originating terminal. The
messages resume if the original usercode is restored.

Inheritance

A process inherits the usercode of its parent. Processes initiated from CANDE or MARC .
sessions inherit the usercode of the session.

Examples

This ALGOL statement assigns a usercode:

REPLACE TVAR.USERCODE BY "SMITH/DAVID.";

This ALGOL statement assigns a null usercode:

REPLACE TSK.USERCODE BY

Run-Time Errors

II II. . ,

When an error occurs in assigning the USERCODE task attribute, field [27:20] of the
ERROR task attribute of the receiving process stores the USERDATA error code. In
addition, any of the following messages can be displayed.

8600 0502-000

USERCODE (cont.)

SECURITY VIOLATION

An attempt was made to assign an illegal usercode value. The assigning
process is discontinued with HISTORYCAUSE = 2 (PROGRAMCAUSEV) and
HISTORYREASON = 29 (SECURITYERRORV). The system adds one of the following
explanatory messages:

• If an attempt was made to assign a USERCODE value that failed security validation,
the following additional message appears.

INVALID TASK ATTRIBUTE: USERCODE

• If a nonprivileged process attempted to set the USERCODE of an in-use process to a
null value, the following additional message appears:

INVALID TASK ATTRIBUTE: USERCODE IS A DOT

• If an attempt was made to assign USERCODE to an object code file at compile time,
. the following additional message appears:

INVALID USERCODE WHEN INITIATING A TASK

USER CODE ATTRIBUTE INCORRECT SYNTAX

An attempt was made to assign USERCODE a value that did not follow the usercode
assignment syntax. The assigning process, if nonprivileged, is discontinued with
HISTORYCAUSE = 2 (PROGRAMCAUSEV) and HISTORYREASON = 131
(INCORRECTSYNTAXV) .

86000502-000 2-219

VALIDITYBITS

VALIDITYBITS

Note: The VALIDITYBITS task attribute is intended for use by the
system software only. The.meanings of the various fields in the
V ALIDITYBITS value are subject to change without notice. It is
therefore not possible for application programs to receive reliable
information from V ALIDITYBITS. For this reason, application
programs should not make use of this attribute.

2-220 8600 0502-000

VISIBILITY

VISIBILITY

Note: The VISIBILITY task attribute has no meaning on systems running
the Mark 3.9 system software release or a later release. The system
displays a deimplementation warning message when a process
attempts to use this attribute.

8600 0502-000 2-221

WAITLIMIT

WAITLIMIT

2-222

Type Real

Units Seconds

Range o to about 4.31 E68

Default o (unlimited)

Read Time Anytime

Write Time Anytime

Inheritance See below

Overwrite Rules Standard

Host Services Supported

Attribute Number 56

Synonym None

Restrictions None

Explanation

The W AITLIMIT task attribute specifies the number of seconds that the process is
allowed to spend in a user-requested wait state. If the process waits longer than its
W AITLIMIT, it is discontinued.

The W AITLIMIT task attribute applies only to program statements that explicitly wait
on one or more events. In particular, it does not apply to suspended processes that issue
RSVP messages, such as processes suspended with a NO FILE condition. This attribute
is intended to catch otherwise undetected application program errors.

W AITLIMIT is not cumulative; it applies to each WAIT statement separately.

The default value of 0 does not impose any wait limit. Assigning 0 to this attribute
removes any previously assigned wait limit.

Some forms of theW AIT statement are not·affected by W AITLIMIT. These forms can
cause the process to wait any amount of time without being discontinued. The following
ar~ WAIT statement forms unaffected by W AITLIMIT:

WFL

WAIT

WAIT (OK)

WAIT « real expression»

ALGOL

WAIT

COBOL74

WAIT UNTIL INTERRUPT

In the last of the three WFL stateme~ts shown, the real expression follows the syntax
described in the A Series Work Flow Language (WFL) Programming Reference Manual.

Inheritance

A task inherits the W AITLIMIT value of its job.

86000502-000

WAITLIMIT (cont.)

If a default value is assigned for the WAITLIMIT attribute of ajob queue, that value is
inherited by WFL jobs run from that job queue. However, a WFL job can change its
W AITLIMIT value after initiation or assign a different W AITLIMIT value to a task.

Ifa limit value is set for the WAITLIMIT attribute ofajob queue, then WFLjobs that
specify a higher W AITLIMIT value in the job attribute list cannot be accepted into that
job queue. However, after initiation a WFL job can assign a W AITLIMIT value higher
than the job queue W AITLIMIT.

Run-Time Error

WAIT TIME LIMIT EXCEEDED

The process remained in a user-requested wait state for longer than the time
specified by W AITLIMIT. The process is discontinued with HISTORYCAUSE = 3
(RESOURCECAUSEV) and HISTORYREASON = 9 (WAITEXCEEDEDV).

86000502-000 2-223

2-224 86000502-000

Appendix A
Understanding Railroad Diagrams

What Are Railroad Diagrams?
Railroad diagrams are diagrams that show you the rules for putting words and symbols
together into commands and statements that the computer can understand. These
diagrams consist of a series of paths that show the allowable structure, constants, and
variables for a command or a statement. Paths show the order in which the command or
statement is constructed. Paths are represented by horizontal and vertical lines. Many
railroad diagrams have a number of different paths you can take to get to the end of the
diagram. For example:

- REMOVE E j
SOURCE
OBJECT

If you follow this railroad diagram from left to right, you will discover three acceptable
commands. These commands are

• REMOVE

• REMOVE SOURCE

• REMOVE OBJECT

If all railroad diagrams were this simple, this explanation could end here. However,
because the allowed ways of communicating with the computer can be complex, railroad
diagrams sometimes must also be complex.

Regardless of the level of complexity, all railroad diagrams are visual representations of
commands and statements. Railroad diagrams are intended to

• Show the mandatory items.

• Show the user-selected items.

• Present the order in which the items must appear.

• Show the number of times an item can be repeated.

• Show the necessary punctuation.

To familiarize you with railroad diagrams, this explanation describes the elements of the
diagrams and provides examples.

Some of the actual railroad diagrams you will encounter might be more complex.
However, all railroad diagrams, simple or complex, follow the. same basic rules. They

86000502-000 A-l

Understanding Railroad Diagrams

all consist of paths that represent the allowable structure, constants, and variables for
commands and statements.

By following railroad diagrams, you can easily understand the correct syntax for
commands and statements. Once you become proficient in the use of railroad notation,
the diagrams serve as quick references to the commands and statements.

Constants and Variables

A constant is an item that cannot be altered. You must enter the constant as it appears
in the diagram, either in full or as an allowable abbreviation. If a constant is partially
underlined, you can abbreviate the constant by entering only the underlined letters. In
addition to the underlined letters, any of the remaining letters can be entered. If no part
of the constant is underlined, the constant cannot be abbreviated. Constants can be
recognized by the fact that they are never enclosed in angle brackets « » and are in
uppercase letters.

A variable is an item that represents data. You can replace the variable with data that
meets the requirements of the particular command or statement. When replacing a
variable with data, you must follow the rules defined for the particular command or
statement. Variables appear in railroad diagrams enclosed in angle brackets.

In the following example, BEGIN mid END are constants while < statement list> is a
variable. The constant BEGIN can be abbreviated since it is partially underlined. Valid
abbreviations for BEGIN are BE, BEG, and BEG!.

- BEGIN -<statement list>- END ----------------i

Constraints

A-2

Constraints are used in a railroad diagram to control progression through the diagram.
Constraints consist of symbols and unique railroad diagram line paths. They include

• Vertical bars

• Percent signs

• Right arrows

• Required items

• User-selected items

• Loops

• Bridges

A description of each item follows.

Vertical Bar

The vertical bar symbol (I) represents the end of a railroad diagram and indicates the
command or statement can be followed by another command or statement.

86000502-000

Understanding Railroad Diagrams

-- SECONDWORD -- (-<arithmetic expression>-) ---------i

Percent Sign

The percent sign (%) represents the end of a railroad diagram and indicates the
command or statement must be on a line by itself.

-- STOP --------------------------------~%

Right Arrow

The right arrow symbol (>) is used when the railroad diagram is too long to fit on one
line and must continue on the next. A right arrow appears at the end of the first line,
and another right arrow appears at the beginning of the next line.

- SCALERIGHT -- (-<arithmetic expression>- ,

?-<arithmetic expression>--)

Required Items

---------------?

A required item can be either a constant, a variable, or punctuation. A required item
appears as a single entry, by itself or with other items, on a horizontal line. Required
items can also exist on horizontal lines within alternate paths or nested (lower-level)

. diagrams. If the path you are following contains a required item, you must enter the
item in the command or statement; the required item carmot be omitted.

In the following example, the word EVENT is a required constant and < identifier> is a
required variable:

-- EV ENT --<i dent i fi er>·--!

User-Selected Items

User-selected items appear one below the other in a vertical list. You can choose anyone
of the items from the list. If the list also contains an empty path (solid line), none of
the choices are required. A user-selected item can be either a constant, a variable, or
punctuation. In the. following railroad diagram, either the plus sign (+) or the minus
sign (-) can be entered before the required variable < arithmetic expression> , or the
symbols can be disregarded because the diagram also contains an empty path.

E ~ ~ <arithmeti c expressi on>

86000502-000 A-3

Understanding Railroad Diagrams

A-4

Loop

A loop represents an: item or group of items that you can repeat. A loop can span all or
part of a railroad diagram. It always consists of at least two horizontal lines, one below
the other, connected on both sides by vertical lines. The top line is a right-to-Ieft path
that contains information about repeating the loop.

Some loops include a return character. A return character is a character - often a
comma (,) or semicolon (;) - required before each repetition of a loop. If there is no
return character, the items must be separated by one or more blank spaces.

~<field ~a~~~---~

Bridge.

Sometimes a loop also includes a bridge, which is used to show the maximum number of
times the loop can be repeated. The bridge can precede the contents of the loop, or it
can precede the return character (if any) on the upper line of the loop.

The bridge determines the number of times you can cross that point in the diagram. The
bridge is an integer enclosed in sloping lines (/ \). Not all loops have bridges. Those that
do not can be repeated any number of times until all valid entries have been used.

In the first bridge example, you can enter LINKAGE or RUNTIME no more than two
times. In the second bridge example, you can enter LINKAGE or RUNTIME no more
than three times.

~ t

. /2\"L ~~~M~~]

i22\
~ ~~~M~~ J~...L..--------------------I

In some bridges an asterisk (*) follows the number. The asterisk means that you must
cross that point in the diagram at least once. The maximum number of times that you
can cross that point is indicated by the number in the bridge.

~/2*\- liNKAGE 1--.--...... 1------------------1
~ RUNTIME ----l

In the previous bridge example, you must enter LINKAGE at least once but no more
than twice, and you can enter RUNTIME any number of times.

The following figure shows the types of constraints used in railroad diagrams.

86000502-000

Understanding Railroad Diagrams

SYMBOL/PATH EXPLANATION

Vertical bar. Indicates that the
I comma"nd or stateme"nt can be fo 11 owed

by "another comma"nd or stateme"nt.

0/0
Percent sign. Indicates that the
comma"nd or stateme"nt must be on a
1 ine by "itse1 f.

> Right arrow. Indicates that the

>
diagram occupies more than one
line.

Requi red items". Indicates the
-< required >- constants, variables, and

punctuation that must be entered
in a comma"nd or stateme"nt.

tYN~ J
User-selected items. Indicates the
items" that appear one below the
other in a vertical 1 i st. You
select which item or items to include.

1< I A loop. Indicates an item or group
of items that can be repeated.

~/2\.l
A bridge. Indicates the maximum
number of t i me"s a loop can be
repeated.

Figure A-I. Railroad Constraints

Following the Paths of a Railroad Diagram
The paths of a railroad diagram lead you through the command or statement from
beginning to end. Some railroad diagrams have only one path, while others have several
alternate paths. The following railroad diagram indicates there is only one path that
requires the constant LINKAGE and the variable < linkage mnemonic> :

- LINKAGE -<linkage mnemonic>>------------------I

Alternate paths provide choices in the construction of commands and statements.
Alternate paths are provided by loops, user-selected items, or a combination of both.

" More complex railroad diagrams can consist of many alternate paths, or nested
(lower-level) diagrams, that show a further level of detail."

For example, the following railroad diagram consists of a top path and two alternate
paths. The top path includes an ampersand (&) and the constants (that are

86000502-000 A-5

Understanding Railroad Diagrams

user-selected items) in the vertical list. These constants are within a loop that can be
repeated any number of times until all options have been selected. The first alternate
path requires the ampersand and the required constant ADDRESS. The second
alternate path requires the ampersand followed by the required constant ALTER and
the required variable < new value> .

~--.
-- & lYPE ---,--'---.-------------------i

ASCII
.!lCL
.!!ECIMAL
.EBCDIC
HEX
QCTAL

ADDRESS ------i
ALTER -<new value>

Railroad Diagram Examples with Sample Input

A-6

The following examples show five railroad diagrams and possible command and
statement constructions based on the paths of these diagrams.

Example 1

<lock statement>

-- LOCK - (- <file identifier> -)

Sample Input

LOCK (FILE4)

Example 2

<open statement>

Explanation

LOCK is a constant and cannot be altered. Because no part
of the word is underlined, the entire word must be entered.

The parentheses are required punctuation, and FILE4 is a
sample file identifier.

-- OPEN -,-----.,.-<database name>>--------------t
L INQUIRY~
L UPDATE --.I

Sample Input

OPEN DATABASEl

Explanation

The constant OPEN is followed by the variable DATABASEl,
which is a database name.

The railroad diagram shows two user-selected items,
INQUIRY and UPDATE. However, because there is an empty
path (solid line), these entries are not required.

continued

86000502-000

continued

Sample Input

OPEN INQUIRY DATABASEl

OPEN UPDATE DATABASEl

Example 3

<generate statement>

Understanding Railroad Diagrams

Explanation

The constant OPEN is followed by the user-selected constant
INQUIRY and the variable DATABASEl.

The constant OPEN is followed by the user-selected constant
UPDATE and the variable DATABASE1.

-- GENERATE --<subset>-- = ~ NULL
L<subset>-r------~

Sample Input

GENERATE Z = NULL

GENERATE Z = X

GENERATE Z = X AND B

GENERATE Z = X + B

86000502-000

AN3D <subset>
OR
+

Explanation

The GENERATE constant is followed by the variable Z,.an
equal sign (=), and the user-selected constant NULL.

The GENERATE constant is followed by the variable Z, an
equal sign, and the user-selected variable X.

The GENERATE constant is followed by the variable Z, an
equal sign, the user-selected variable X, the AND command
(from the list of user-selected items in the nested path), and
a third variable, B.

The GENERATE constant is followed by the variable Z, an
equal sign, the user-selected variable X, the plus sign (from
the list of user-selected items in the nested path), and a third
variable, B.

A-7

Understanding Railroad Diagrams

A-8

Example 4

< entity reference declaration>

rf--------
- ENTITY REFERENCE -L<enti ty ref 10>- c' -<cl ass 10>-) --1-__ ---;

Sample I npu~

ENTITY REFERENCE ADVISOR1 (INSTRUCTOR)

ENTITY REFERENCE ADVISOR 1 (INSTRUCTOR),
ADVISOR2 (ASST_INSTRUCTOR)

Example 5

Explanation

The required item ENTITY
REFERENCE is followed by the
variable ADVISOR1 and the variable
INSTRUCTOR. The parentheses are
required.

Because the diagram contains a
loop, the pair of variables can be
repeated any number of times.

- PS - MQ!lIFY ---------------------+

-+nf-<request number>--'--------.--'--...-------+
<request number>-- - ~<request number

ALL-r---------------~
.EXCEPTIONS __________J

-+.-r---------------.-----------~

L-.-L..~-__.__<file att~ibute phrase

I---.--<print modifier phrase>

Sample Input

PS MODIFY 11159

PS MODIFY 11159,11160,11163

PS MOD 11159-11161 DESTINATION =
II LP7"

PS MOD ALL EXCEPTIONS

Explanation .

The constants PS and MODIFY are followed
by the variable 11159, which is a request
number.

Because the diagram contains a loop, the
variable 11159 can be followed by a comma,
the variable 11160, another comma, and the
final variable 11163.

The constants PS and MODIFY are followed
by the user-selected variables
11159-11161, which are request numbers,
and the user-selected variable DESTINATION
= II LP7" , which is a file attribute phrase.
Note that the constant MODIFY has been
abbreviated to its minimum allowable form.

The constants PS and MODIFY are followed
by the user-selected constants ALL and
EXCEPTIONS.

8600 0502-000

Glossary

A
abnormal termination

access

The type of termination that results when a process encounters a run-time error, or is
discontinued by an operator command or a statement in another process.

To perform an action on an object. Possible actions depend on the type of object; for
example, interrogating or assigning a value to a variable, reading from or writing to a file,
or invoking a procedure.

access mask register (AMR)

active

ALGOL

AMR

ancestor

APL

APLB

In intersystem control (ISC), a 48-bit register attached to a host control (HC) unit and
visible to all other HC units that specify the intended data flow of the HC. The ISC
hardware uses the AMR mode information to determine what operations are allowable
on an HC.

Pertaining to the state of a process that is executing normally, and is neither scheduled
nor suspended.

Algorithmic language. A structured, high-level programming language that provides
the basis for the stack architecture of the U nisys A Series systems. ALGOL was the
first block-structured language developed in the 1960s and served as a basis for such
languages as Pascal and Ada. It is still used extensively on A Series systems, primarily
for systems programming.

See access mask register.

The parent of a particular task, or the parent of any ancestor of the task.

A Programming Language. A procedure-oriented language that can produce very short
but powerful programs.

A Programming Language B. A second-generation extended version of A Programming
Language (APL).

asynchronous process
A process that executes in parallel with its initiator.

86000502-000 Glossary-l

Glossary

B
BDMSALGOL

A U nisys language based on Extended ALGOL that contains extensions for accessing
Data Management System II (DMSII) databases.

beginning of job (BOJ)
The start of processing of a job.

beginning of task (BOT)

block

BNA

BOJ

BOT

c

The start of processing of a task.

A program, or a part of a program, that is treated by the processor as a discrete unit.
Examples are a procedure in ALGOL, a procedure or function in Pascal, a subroutine or
function in FORTRAN, or a complete COBOL program.

The network architecture used on A Series, B 1000, and V Series systems as well as
CP9500 and CP 2000 communications processors to connect multiple, independent,
compatible computer systems into a network for distributed processing and resource
sharing.

See beginning of job.

See beginning of task.

calling process

CANDE

A process that is linked to a library process and can import objects from that library
process. See also user process.

See Command and Edit.

client process

COBOL

A process that is linked to a library process and can import objects from that library
process. See also user process.

Common Business-Oriented Language. A widely used, procedure:-oriented language
intended for use in solving problems in business data processing. The main
characteristics of COBOL are the easy readability of programs and a considerable degree
of machine independence. COBOL is the most widely used procedure-oriented language.

COBOL(68)

Glossary-2

A version of the COBOL language that is compatible with the American National
Standard X3.23-1968.

86000502-000

Glossary

COBOL74
A version of the COBOL language that is compatible with the American National
Standard X3.23-1974.

code segment dictionary
A memory structure that is associated with a process and that indexes the memory
addresses of the various segments of program code used by that process. The same code
segment dictionary can be shared by more than one process, provided that each process
is an instance of the same procedure. A code segment dictionary is also referred to as a
Dl stack.

Command and Edit (CANDE)
A time-sharing message control system (MCS) that enables a user to create and edit
files, and to develop, test, and execute programs, interactively.

Communications Management System (COMS)

compiler

COMS

constant

A general message control system (MCS) that controls online environments on A Series
systems. COMS can support the processing of multiprogram transactions, single-station
remote files, and multistation remote files.

A computer program that translates instructions written in a source language, such as
COBOL or ALGOL, into machine-executable object code.

See Communications Management System.

An object whose value is assigned during program compilation and cannot be changed
during program execution.

coroutine

cousin

One of a group of processes that exist simultaneously, but take turns executing, so that
only one of the processes is executing at any given time. The coroutine that is currently
executing is called the active coroutine, and the others are called continuable coroutines.

A process that has an ancestor in common with sO,me other process, but does not have
the same parent as the other process.

critical block
'For a dependent process, the block of the highest lexical level that includes the
declaration of any critical objects used by the dependent process. The process that is
executing the critical block is called the parent of the dependent process. If the parent
exits the critical block while the dependent process is in use, the parent is discontinued
and the dependent process is also discontinued.

critical object
A type of object that is used by a process, but was originally declared by another process.
Critical objects include the task variable for the process, the procedure declaration for
the process, and any objects passed as actual parameters to the process by name or by
reference.

86000502-000 Glossary-3

Glossary

D
datacomm

See data communications.

data communications (data comm)
The transfer of data between a data source and a data sink (two computers, or a
computer and a terminal) by way of one or Illore data links, according to appropriate
protocols.

Data Communications ALGOL (DCALGOL)
A Unisys language based on ALGOL that contains extensions for writing message
control system (MCS) programs and other specialized system programs.

Data Management ALGOL (DMALGOL)
A Unisys language based on ALGOL that contains extensions for writing Data
Management System II (DMSII) software and other specialized system programs.

Data Management System II (DMSII)
A specialized system software package used to describe a database and maintain the
relationships among the data elements in the database.

data specification
A section of a Work Flow Language (WFL) source program containing data that can be
read by tasks of the WFLjob. A data specification is also referred to as a data deck.

database (DB)

DB

An integrated, centralized system of data files and program utilities designed to support
an application. The data sets and associated index structures are defined by a single
description. Ideally, all the permanent data pertinent to a particular application resides
in a single database. The database is considered a global entity that several applications
can access and update concurrently.

See database.

DCALGOL
See Data Communications ALGOL.

declaration
A programming language construct used to identify an object, such as a type or variable,
to the compiler. A declaration can be used to associate a data type with the object so that
the object can be used in a program .

. declared external procedure
A dummy procedure declaration used in ALGOL or COBOL74 to enable a program to
initiate a separate program.

dependent process

Glossary-4

A process that depends on the continued existence of another process called the parent
process. See also task.

86000502-000

Glossary

descendant
An offspring of a particular process, or an offspring of a descendant of that process.

direct addressing environment
The set of objects that can be accessed by statements in a particular procedure, but that
are not passed as parameters to that procedure.

directory
(1) A table of contents listing the files contained on a device. The device is usually a disk
or a tape. (2) A list of file names organized into a hierarchy according to similarities
in their names. File names are grouped in a directory if their first name constants
(and associated usercodes) are identical. These groups are divided into subdirectories
consisting of those file names whose first two name constants are identical, and so on.

discontinue
To cause a process to terminate abnormally. A process can be discontinued by operator
commands, by statements in related processes, or by the system software.

distributed systems service (DSS)
One of a collection of services provided on Unisys hosts to support communications
across multihost networks. DSSs can be services such as file handling, station transfer,
and mail transfer.

DMALGOL

DMSII

DSS

E
EBCDIC

EFS

element

See Data Management ALGOL.

See Data Management System II.

See distributed systems service.

Extended Binary Coded Decimal Interchange Code. An 8-bit code representing 256
graphic and control characters that are the native character set of most mainframe
systems.

See extended file system.

A component of an array.

end of file (EOF)

EOF

A code at the end of a data file that signals that the last record in the file has been
processed.

See end of file.

86000502-000 Glossary-5

Glossary

exception task
A process that has a special relationship with another process, such that the following
are true: the exception task's EXCEPTIONEVENT task attribute is caused whenever
the status of the related process changes; and the related process can use the
EXCEPTIONTASK task attribute to access the task attributes of the exception task.

exe'cution

exit

The act of processing statements in a program.

To end the processing of an entered block. Exiting the block eliminates the activation
record.

expression
A combination of operands and operators that results in the generation of one or more
values.

extended addressing environment
The set of objects that can be accessed by statements in a particular procedure, including
any objects that were passed as parameters to that procedure.

extended :file system (EFS)
A file system controlled by KEYEDIOII. This file system supports sequential, direct, and
indexed organization; alternate index files; record-level locking; and delete-capability for
RPG files. Contrast with basic file system.

external procedure
A procedure whose procedure body is contained in an object code file different from the
statement that invokes the procedure. External procedures are of three kinds: declared
external procedures, passed external procedures, and library procedures.

external process

F
family

fatal

A process created by initiating an external procedure.

(1) One or more disks logically grouped and treated as a single entity by the system.
Each family has a name, and all disks in the family must have been entered into the
family with the RC (Reconfigure Disk) system command. (2) See also process family.

Referring to something capable of causing a process to be discontinued. An error that
causes a process to be discontinued is called a fatal error.

FETCH specification

Glossary-6

A statement in a Work Flow Language (WFL) job that provides a message an operator
can display with a PF (print Fetch) system command. Resetting the NOFETCH system
option delays initiation of jobs with FETCH specifications until the operator enters an
OKcommand for eachjob.

86000502-000

Glossary

FIB
See file information block.

file attribute
An element that describes a characteristic of a file and provides information the system
needs to handle the file. Examples of file attributes are the file title, record size, nwnber
of areas, and date of creation. For disk files, permanent file attribute values are stored in
the disk file header.

file information block (FIB)
A data structure in an object code file that contains information describing a file.

formal parameter
An object that is declared in a procedure heading and that receives its value from an
actual parameter when the procedure is invoked.

FORTRAN
Formula Translation. A high-level, structured programming language intended primarily
for scientific use. .

FORTRAN77

frozen

G

A version of the FORTRAN language that is compatible with the ANSI X3.9-1978
standard.

The state of a process whose STATUS task attribute has the value FROZEN. This
STATUS value indicates that the process is a library process and provides objects that
can be imported by user processes.

guard file

H
haltlload

HCunit

A disk file created by the GUARDFILE utility program that describes the access rights
of various users and programs to a program, data file, or database.

A system-initialization procedure that temporarily halts the system and loads the master
control program (MCP) from a disk to main memory.

See host control (HC) unit.

host control (HC) unit
A specialized data link processor (DLP) that enables host systems to communicate
through an intersystem control (lSC) hub on a channel-to-channel communications
interface between A Series and CP9500 systems.

86000502-000 Glossary-7

Glossary

I/O
Input/output. An operation in which the system reads data from or writes data to a file
on a peripheral device such as a disk drive.

import object
The declaration of a library object in a user program.

in-use process
A process that has been submitted for initiation and has not yet terminated. The state of
an in-use process can be scheduled, active, or suspended.

independent process
A process that does not depend on the continued existence of a parent process. An
independent process is the head of any process family it is part of. See also job.

independent runner (IR)

index

A master control program (MCP) procedure that is initiated as an independent process.
The procedure is executed in its own process stack rather than in the stack of a user
process. An IR can be either visible or invisible. If the IR is visible, its status can be
interrogated. If the IR is invisible, it does not appear in mix displays. .

A value used to specify a particular element of an array variable.

InfoGuard
The U nisys security-enhancement software for A Series systems. InfoGuard provides
such features as password management, selective logging and auditing, tape volume
security, and simplified system-security configuration.

inheritance

initiation

initiator

instance

Glossary-8

The automatic transfer of particular task attribute values from a process to a descendant
process. More broadly, inheritance also refers to the automatic transfer of values
from job queue attributes or session attributes to the equivalent task attributes of a
descendant process.

A type of procedure invocation that causes the creation of a new process, with its own
process stack and process information block (PIB). Additionally, a new code segment
dictionary is created if a code segment dictionary for that procedure is not already
available.

The process that initiates a particular process. The initiator can be a different process
from the parent process.

A process that is an execution of a particular procedure and that has its own process
stack. Multiple instances of a procedure can exist at the same time; a new instance is
created each time the procedure is initiated.

86000502-000

Glossary

interactive process
A process that reads input from a terminal or operator display terminal (ODT), and
whose actions are largely determined by the input received. A data entry process, such
as the Editor, is an example of an interactive process.

internal procedure
A procedure whose procedure body is contained in the same object code file as the
statement that invokes the procedure.

internal process
The execution of an internal procedure that has been initiated.

invocation

J
job

job log

The act that transfers control to the start of a specified procedure, initializes any
parameters, and begins the execution of the statements of the procedure. Invocations
are of two kinds: entrances and initiations.

An independent process. The job of a particular task is the independent process that is
the eldest ancestor of that task.

A log that is stored in a job file and contains log entries for a particular job and its
descendant tasks. When the job terminates, the job log is processed to produce the job
summary.

job queue
A structure in the system software that stores a list of jobs that have been compiled and
are waiting to be initiated.

job summary

L
library

A file, produced after ajob completes execution, that lists information such as the tasks
initiated by the job, the beginning and ending times for each task, and the termination
information for each task.

A program that exports objects for use by user programs.

library process
An instance of the execution of a library. The sharing option of a library determines
whether multiple user programs use the same instance of the library.

local object
An object that is declared within a particular block.

86000502-000 Glossary-9

Glossary

logical file
A file variable declared in a program, which represents the file and its structure to the
program. A logical file has no properties of its own until it is described by file attributes
or associated with a physical file.

logical station number (LSN)

LSN

M

(1) In the Network Definition Language II (NDLII), a unique number assigned to each
station in a network. Each station has an LSN assigned according to the order in which
the stations are defined in NDLII. The first defined station is 1. (2) In the Interactive
Datacomm Configurator (IDC), a unique number assigned to each station structure.
When IDe creates the DATACOMINFO file from the network information file II
(NIFII), it assigns an LSN to each structure sequentially, beginning with the number 2.
The numbers allocated by IDC are the same as those used by the operating system to
identify a station.

See logical station number.

MAKEUSER

MARC

A utility used to define, modify, or display information about the usercodes that
are available on the system. The usercode information is stored in a file called the
USERDAT AFILE.

See Menu-Assisted Resource Control.

master control program (MCP)

MCP

MCS

The central program of the A Series operating system. The term applies to any master
control program that U nisys may release for A Series systems.

See master control program.

See message control system.

Menu-Assisted Resource Control (MARC)
A menu-driven interface to A Series systems that also enables direct entry of commands.

message control system (MCS)
A program that controls the flow of messages between terminals, application programs,
and the operating system. MCS functions can include message routing, access control,
audit and recovery, system management, and message formatting.

microsecond
One-millionth of a second (.000001).

Glossa ry-l 0 86000502-000

mix

Glossary

The set of processes that currently exist on a particular computer. The mix can include
active, scheduled, and suspended processes.

mix number

MYJOB

MYSELF

N

A 4-digit number that identifies a process while it is executing. This number is stored in
the MIXNUMBER task attribute.

A predeclared task variable that a process can use to access the task attributes of its job.

A predeclared task variable that a process can use to access its own task attributes.

normal termination

o
object

The termination of a process that has executed successfully, without any errors and.
without being terminated prematurely by an operator command or another process.

Any item declared in a program. Arrays, files, procedures, tasks, and variables are all
examples of objects.

object code file

ODT

offspring

A file produced by a compiler when a program is compiled successfully. The file contains
instructions in machine-executable object code.

See operator display terminal.

. The dependent process whose critical block is owned by a particular parent process.

operator display terminal (ODT)
A terminal or other device that is connected to the system in such a way that it can
communicate directly with the operating system. The aDT allows operations personnel
to accomplish system operations functions through either of two operating modes:
system command mode or data comm mode.

outer block

overlay

The portion of a program that has the lowest lexical level.

To load code or data into a memory area that was previously allocated to other code or
data, and to write any data that previously occupied the area to a disk file if necessary.

86000502-000 Glossary-II

Glossary

p

parameter
An identifier associated in a special way with a procedure. A parameter is declared in the
procedure heading and is automatically assigned a value when the procedure is invoked.

parameter passing

parent

The act of passing an object or a value from an actual parameter to a formal parameter.

A process that owns the critical block of a dependent process. If the parent exits
the critical block before the dependent process terminates, the dependent process is
discontinued.

partner process
The process that is specified by the PARTNER task attribute of another process. A
process can transfer control to its partner process by executing a general continue
statement.

performance
(1) A measurement of how efficiently a process uses resources such as processor time,
I/O time, or elapsed time. (2) A measure of the amount of work a computer system is
able to do in a given period of time.

physical file

PIB

PL/I

A file as it is stored on a particular recording medium such as a disk or a tape.

See process information block.

Programming Language 1. A high-level, structured programming language designed
primarily for scientific and cOIiUnercial use.

private process

privilege

A process whose task attributes cannot be accessed by other processes. Assigning the
private process option to the OPTION task attribute causes a process to become a
private process.

The ability to invoke actions that are not ordinarily allowed, such as accessing private
files stored under other usercodes or invoking privileged functions such as SETSTATUS.
The concept of privilege applies to usercodes, programs, and processes.

procedure
A block that can be invoked by statements elsewhere in the same program or, in
some cases, by statements in another program. In most instances, a procedure has
a procedure heading and a procedure body. Exampl~s are a procedure in ALGOL, a
procedure or function in Pascal, a subroutine or function in FORTRAN, or a complete
COBOL program.

Glossa ry-12 86000502-000

Glossary

procedure initiation
See initiation.

process
The execution of a program or of a procedure that was initiated. The process has its own
process stack and process information block (PIB). It also has a code segment dictionary,
which can be shared with other processes that are executions of the same program or
procedure.

process family
A group of processes consisting of a single job and any tasks that are descendants of that
job.

process information block (PIB)
A memory structure that is associated with each process stack,· and which stores the
values of the task attributes of that process.

process stack
A inemory structure that stores information about the current state of the execution of a
procedure. The process stack includes activation records for all blocks that the process
has entered and not yet exited.

process state
The current status of a process. The three process states are scheduled, active, or
suspended.

processor

program

A hardware component that executes programs and procedures.

(1) A specification of the sequence of computational steps that solve a computational
problem. The steps are written (coded) in a particular programming language. (2) An
object code file.

pseudostation

R

A station created by the operating system that can be attached to, and controlled by,
a message control system (MCS) like a real station. Unlike a real station, however, a
pseudostation is not declared in the SOURCENDLII file or the DATACOMINFO file, has
no line assigned, and does not need a corresponding physical terminal on the local host.

remote file
A file with the KIND attribute specified as REMOTE. A remote file enables object
programs to communicate interactively with a terminal.

remote host system
Any computer system that is linked to the local host by means of a telecommunications
network.

86000502-000 Glossary-13

Glossary

remote job entry (RJE)
A Unisys message control system (MCS) that allows jobs, data, and control commands to
be sent to a central system from a remote card reader; RJE also allows output of data
from the central system to be sent. to remote peripherals.

remote process
A process initiated by a process that was running on another host system.

resuming

RJE

RPG

The act of changing a library process into a nonlibrary process. For example, a
temporary library process resumes execution as a nonlibrary process when the last user
process delinks from the library. Contrast with thawing.

See remote job entry.

Report Program Generator. A high-level, commercially oriented programming language
used most frequently to produce reports based on information derived from data files.

RSVP message
A message the system displays for a suspended process that states the reason the
process was suspended. RSVP messages ask for a reply such as OK or DS.

run-time error

s

An error occurring during the execution of a program, which causes the system software
to terminate execution of that program abnormally.

scheduled process

session

sibling

. A process whose initiation is delayed, either because the operator has entered an HS
(Hold Schedule) system command or because the operating system estimates the process
is likely to need more memory than is currently available.

The interactions between a user and a message control system (MCS) during a particular
. period of time that is assigned an identifying session number. Logging on initiates a new
session; logging off terminates a session. Each Menu-Assisted Resource Control (MARC)
or Command and Edit (CANDE) dialogue at a terminal accesses a different session.

A task that has the same parent as another task.

SORT facility
An operating system procedure that sorts a file or a set of records. SORT can be
activated through ALGOL, COBOL(68), COBOL74, PL/I, or the SORT compiler.

source file
A file in which a source program is stored.

Glossa ry-14 86000502-000

Glossary

source program

stack

station

A program coded in a language that must be translated into machine language before
execution. The translator program is usually a compiler.

(1) A region of memory used to store data items in a particular order on a last-in,
first-out basis. (2) A nonpreferred synonym for process stack.

The outer end of a communication line. A station can correspond to a single terminal
connected on a single line, or several stations can be connected on a line.

support library
A library that is associated with a function name. User programs can access a support
library by way of its function name instead of its object code file title. The operator uses
the SL (Support Library) system command to link function names with libraries.

suspended process
A process that has temporarily stopped executing and cannot continue until appropriate
operator or programmatic action is taken. A process can be suspended deliberately by an
operator command or a statement in a program. In addition, the operating system can
suspend a process automatically, for example, if the process has requested a file that is
missing.

synchronous process
A process whose initiator waits after initiating the process. When the process
terminates, the initiator resumes execution.

system command
Any of a set of commands used to communicate with the operating system. System
commands can be entered at an operator display terminal (ODT), in a Menu-Assisted
Resource Control (MARC) session, or by way of the DCKEYIN function in a privileged
Data Communications ALGOL (DCALGOL) program.

system software

T
TADS

task

The master control program (MCP) and all other object code files necessary for system
operation.

See Test and Debug System.

A dependent process.

task attribute
Any of a number of items that describe and control various aspects of process execution
such as the usercode, priority, and the default family specification. Task attributes
can be assigned interactively through task equations, or programmatically through
statements that use task variables.

86000502-000 Glossary-15

Glossary

task file
A printer backup file that is associated with each process, and that stores any program
dumps generated by the process while the TOPRINTER program dump option is
enabled. Processes cari also write comments to the task file by way of the T ASKFILE
task attribute.

task variable

tasking

An object that is used to interrogate or modify the task attributes of a particular process.

The act of initiating, monitoring, or controlling processes. The processes can be either
jobs or tasks. Operators and users can enter tasking commands from an operator display
terminal (ODT), a Command and Edit (CANDE) session, or a Menu-Assisted Resource
Control (MARC) session. Programs can initiate processes with such statements as
CALL, PROCESS, or RUN. Programs can monitor and control processes by reading and
assigning the values of various task attributes.

termination
The act of permanently ceasing execution of a process. The process stack and process
information block (PIB) are removed. The code segment dictionary can,also be removed.

Test and Debug System (TADS)

thawing

u

A Unisys interactive tool for testing and debugging programs and libraries. TADS
enables the programmer to monitor and control the execut'ion of the software under
testing and examine the data at any given point during program execution.

The act of changing a permanent or control library into a temporary library. Contrast
with resuming.

user process
(1) A process that is not an invisible independent runner, a message control system
(MCS), or a system library. (2) A process that is linked to a library process and can
,import objects from that library process. Synonym for calling process, client process.

user program
(1) A program that is not part of the system software. (2) A program that uses objects
imported from a library program.

usercode r

An identification code used to establish user identity and control security, and to provide
for segregation of files. U sercodes can be applied to every task, job, session, and file on
the system. A valid usercode is identified by an entry in the USERDATAFILE.

usercode attribute
A characteristic that can be associated with a usercode in the USERDATAFILE. A set
of standard usercode attributes, such as PU, MAXPw, IDENTITY, and PASSWORD,
are s~pplied as part of the description of the USERDATAFILE structure. The system

Glossary-16 86000502-000

usercode

Glossary

An identification code used to establish user identity and control secwity, and to provide
for segregation of files. U sercodes can be applied to every task, job, session, and file on
the system. A valid usercode is identified by an entry in the USERDATAFILE.

usercode attribute
A characteristic that can be associated with a usercode in the USERDATAFILE. A set
of standard usercode attributes, such as PU, MAXPw, IDENTITY, and PASSWORD,
are supplied as part of the description of the USERDATAFILE structure. The system
administrator or security administrator can define additional usercode attributes to meet
the specific needs of an installation.

USERDATAFILE

v
variable

w
WFL

WFLjob

window

A system database that defines valid usercodes and contains various data about each
user (such as accesscodes, passwords, and chargecodes) and the population of users for a
particular installation.

An object in a program whose value can be changed during program execution.

See Work Flow Language.

A Work Flow Language (WFL) program, or the execution of such a program.

In the Communications Management System (COMS) architecture, the concept
that enables a number of program environments to be operated independently and
simultaneously at one station. One of the program environments can be viewed while
the others continue to operate.

Work Flow Language (WFL)

WORM

A Unisys language used for constructing jobs that compile or run programs on A Series
systems. WFL includes variables, expressions, and flow-of-control statements that offer
the programmer a wide range of capabilities with regard to task control.

Write-once, read-many. See also WORM device, WORM medium.

WORM device
A random-access optical disk drive that can write to the WORM media only once, but can
access the files on the WORM media many times.

8600 0502--010 Glossary-I 7

Glossary

WORM medium
A high-density storage medium that can be written to only once and can be read from
many times.

Glossary-18 86000502-010

Bibliography

A Series ALGOL Programming Reference Manual, Volume 1: Basic Implementation
(86000098) Unisys Corporation.

A Series ALGOL Test and Debug System (TADS) Programming Guide (1169539).
Unisys Corporation.

A Series C Test and Debug System (TADS) Programming Reference Manual
(86001591). Unisys Corporation.

A Series CANDE Operations Reference Manual (8600 1500). Unisys Corporation.

A Series COBOL ANSI-68 Programming Reference Manual (8600 0320). Unisys
Corporation.

A Series COBOLANSI-74 Programming Reference Manual, Volume 1: Basic
Implementation (86000296). Unisys Corporation.

A Series COBOL ANSI-74 Test and Debug System (TADS) Programming Guide
(1169901). Unisys Corporation.

A Series COBOL ANSI-85 Test and Debug System (TADS) Programming Reference
Manual (8600 0957). Unisys Corporation.

A·Series DCALGOL Programming Reference Manual (8600 0841). Unisys
Corporation.

A Series Disk Subsystem Administration and Operations Guide (8600 0668). Unisys
Corporation.

A Series DMSII Application Program Interfaces Programming Guide (5044225).
Unisys Corporation.

A Series File Attributes Programming Reference Manual (8600 0064). Unisys
Corporation.

A Series FORTRAN Programming Reference Manual (1222691). Unisys
Corporation.

A Series FORTRAN77 Programming Reference Manual (3957 6053). Unisys
Corporation.

A Series FORTRAN77 Test and Debug System (TADS) Programming Guide (1222667).
Unisys Corporation.

A Series 110 Subsystem Programming Guide (8600 0056). Unisys Corporation.

86000502-010 Bibliography-1

Bibliography

A Series Menu-Assisted Resource Control (MARC) Operations Guide (8600 0403).
Unisys Corporation.

A Series MultiLingual System (MLS) Administration, Operations, and Programming
Guide (86000288). Unisys Corporation.

A Series NEWP Programming Reference Manual (5044233). Unisys Corporation.

A Series PL/I Reference Manual (1169620). Unisys Corporation.

A Series Print System (printS/ReprintS) Administration, Operations, and
Programming Guide (8600 1039). Unisys Corporation.

A Series Report Program Generator (RPG) Programming Reference Manual, Volume 1:
Basic Implementation (86000544). Unisys Corporation.

A Series Security Administration Guide (8600 0973). Unisys Corporation.

A Series Security Features Operations and Programming Guide (8600 0528). Unisys
Corporation.

A Series System Administration Guide (8600 0437). Unisys Corporation.

A Series System Commands Operations Reference Manual (8600 0395). Unisys
Corporation.

A Series System Messages Support Reference Manual (8600 0429). Unisys
Corporation.

A Series System Operations Guide (86000387). Unisys Corporation.

A Series System Software Support Reference Manual (8600 0478). Unisys
Corporation.

A Series System Software Utilities Operations Reference Manual (8600 0460). Unisys
Corporation.

A Series Systems Functional Overview (8600 0353). Unisys Corporation.

A Series Task Management Programming Guide (8600 0494). Unisys Corporation.

A Series Work Flow Language (WFL) Programming Reference Manual (8600 1047).
Unisys Corporation.

Bibliography-2 8600 0502-010

Index

A

accept event, 2-14
ACCEPTEVENTAT1iITBUTEIS

READONLYerror message, 2-15
ACCEPTEVENT task attribute, 2-14
< accesscode assignment>, 2-16
ACCESSCODE AT1iITBUTE INCORRECT

SYNTAX error message, 2-17
< accesscode password> , 2-16

in < accesscode assignment> , 2-16
ACCESSCODE task attribute, 2-16
< access~ode > , 2-16

in <accesscode assignment>, 2-16
accessing process

and task attribute errors, 1-26
ACCUMIOTIME task attribute, 2-19
ACCUMPROCTIME task attribute, 2-20
ALGOL

bit-level task attribute access, 1-10
Boolean task attribute syntax, 1-6
event task attribute syntax, 1-7
integer and real task attribute syntax, 1-7
mnemonic task attribute syntax, 1-8
string task attribute syntax, 1-9
task attribute access in, 1-2
task-valued task attribute syntax, 1-9

< alternate family> , 2-69
in < family specification> , 2-69

APLB
task attribute access in, 1-2

APPL YLIST task attribute, 2-21
ARRAYS option, of OPTION task attribute,

2-144
asynchronous processes

LOCKED task attribute, 2-125
ATTABLEGEN,2-1
ATTEMPT TO EXCEED TEMPORARY

FILE LIMIT error message, 2-214
< attribute value>, 2-120
AT1iITBUTE/INTERPRETER/INTERFACE

and AT1iITBUTEMESSAGE calls, 1-18
and HANDLEAT1iITBUTES calls, 1-11

86000502-010

ATTRIBUTEMESSAGE procedure of
WFLSUPPORT library, 1-18

AUTORESTORE task attribute, 2-22
AUTORM option, of OPTION task attribute,

2-144
AUTOSWITCHTOMARC task attribute,

2-24
AX (Accept) system command

B

and the ACCEPTEVENT task attribute,
2-14

BACKUP option of OPTION task attribute,
2-144

< backup prefix> , 2-28
BACKUPDESTINATION AT1iITBUTE

INCORRECT SYNTAX error
message,2-51

BACKUPDESTINATION, synonym for
DESTNAME task attribute, 2-50

BACKUPFA.MILY AT1iITBUTE MAY ONLY
BE SET BY AN MCS... message,
2-27

BACKUPF A.MIL Y task attribute, 2-25
BACKUPKIND file attribute

and BACKUPF AMILY task attribute,
2-25

BACKUPPREFIX, synonym for BDNAME
task attribute, 2-28

BASE option, of OPTION task attribute,
2-144

BDBASE option
effect on BDNAME task attribute, 2-29

BDBASE option, of OPTION task attribute,
2-145

BDNAME ATTRIBUTE INCORRECT
SYNTAX error message, 2-29

Index-1

Index

BDNAME ATTRIBUTE IS READONLY ON
ACTIVE TASK error message, 2-29

BDNAME task attribute, 2-28
bit-level access to task attributes, 1-9
Boolean task attributes, syntax for using, 1-6
BRCLASSATTRIBUTEINCORRECT

SYNTAX error message, 2-31
BRCLASS task attribute, 2-30

c
CANNOT APPLY: PPB IS FOR CODEFILE

warning message, 2-21
CENTRALSUPPORT library, 2-40
< charge code> , 2-32
CHARGE task attribute, 2-32
CHARGE CODE ATTRmUTE INCORRECT

SYNTAX error message, 2-33
CHARGE CODE READONLY ON ACTIVE

TASK, NOT CHANGED message,
2-33

CHARGE CODE, synonym for CHARGE task
attribute, 2-32

checkpoint facility
RESTARTED task attribute, 2-165

CHECKPOINTABLE task attribute, 2-35
CLASS task attribute, 2-37
CO (Controller Options) system command,

2-192
COBOL(68)

task attribute access in, 1-2
COBOL74

bit-level task attribute access, 1-10
Boolean task attribute syntax, 1-7
event task attribute syntax, 1-7
integer and real task attribute syntax, 1-8
mnemonic task attribute syntax, 1-8
string task attribute syntax, 1-9
task attribute access in, 1-2
task-valued task attribute syntax, 1-9

CODE FILE MUST BE ACTIVE error
message, 2-212

code files, (See object code files)
CODE option, of OPTION task attribute,

2-145
CODEVISIBILITY task attribute, 2-39
compilations

assigning task attributes at
in CO:MPILE statements, 1-5
using HANDLEATTRIBUTES, 1-21

compiled-in task attributes, 1-5

Index-2

COMPILER modifier, in COMPILE
statements, 1-6

compiler status
and ability to assign null USERCODE,

2-218
CONTINUE statements

PARTNER task attribute, 2-154
P ARTNEREXISTS task attribute, 2-156

< convention identifier>, 2-40
CONVENTION task attribute, 2-40
CORE ATTRmUTE INCORRECT SYNTAX

error message, 2-43
CORE task attribute, 2-42
COREESTIMATE, synonym for CORE task

attribute, 2-42
coroutines

PARTNER task attribute, 2-154
P ARTNEREXISTS task attribute, 2-156

critical block
and STATUS task attribute, 2-186

D

DATABASE ATTRIBUTE - RESTRICTED
ACCESS error message, 2-44

DATABASE ATTRIBUTE IS WRITEONLY
error message, 2--45

< database equation>, 2-44
in MYPPB assignments, 2-138

DATABASE task attribute, 2-44
databases

DATABASE task attribute, 2-44
MAXWAIT task attribute, 2-134

DATACO:M:M MUST BE ACTIVE TO SET
DESTSTATION error message, 2-53

<day>, 2-181
in < starttime specification>, 2-181

< days>, 2-181
in < starttime specification> , 2-181

DBS option, of OPTION task attribute,
2-145

DEBUG option, of OPTION task attribute,
2-145

DECKGROUPNO task attribute, 2-46
DECLAREDPRIORITY, synonym for

PRIORITY task attribute, 2-159
deimplementation warnings

stored in object code file, 2-211
suppressing, 2-191

DEPTASKACCOUNTING task attribute,
2--47

8600 0502-010

DESTNAME ATTRIBUTE IS READ ONLY
ON ACTIVE TASK error message,
2-51

DESTNAME task attribute, 2-50
DESTSTATION ATTRIBUTE IS READ

ONLY ON ACTIVE TASK message,
2-54

DESTSTATION task attribute, 2-53
< digit> , 2-8

in < convention identifier>, 2-40
in < language identifier> , 2-118B
in < nonquote identifier> , 2-8
in < simple name>, 2-9

DISK LIMIT EXCEEDED error message,
2-56

DISKLIMIT task attribute, 2-55
DISPLAY message

DISPLAYONLYTOMCS task attribute,
2-57

DISPLAYONL YTOMCS task attribute, 2-57
DISPLAYTOSTANDARD function, and

BACKUPF AMILY task attribute,
2-26

DL (Disk Location) system command
and BACKUPF AMILY task attribute,

2-25
DSED option, of OPTION task attribute,

2-145

E

elapsed time
interrogating programmatically, 2-60

ELAPSED TIME LIMIT EXCEEDED error
message, 2-59

ELAPSEDLIMIT task attribute, 2-59
ELAPSEDTIME task attribute, 2-60
ERROR ATTRIBUTE IS READONLY error

message, 2-64
ERROR task attribute, 2-61

interrogating at the bit level, 1-9
errors in task attribute access, 1-25
event task attributes, syntax for using, 1-7
events

ACCEPTEVENT, 2-14
EXCEPTIONEVENT, 2-65

EXC I/O TIME error message, 2-129
EXC PROC TIME error message, 2-133
exception event, 2-65
exception task

EXCEPTIONTASK task attribute, 2-67

86000502-010

Index

EXCEPTIONEVENT ATTRIBUTE IS
READONL Y error message, 2-66

EXCEPTIONEVENT task attribute, 2-65
EXCEPTIONTASK task attribute, 2-67
external indicators, in RPG, 2-194

F

FAMILY ATTRIBUTE INCORRECT
SYNTAX error message, 2-71

< family name>, 2-8
in < title> , 2-9

< family specification> , 2-69
FAMILY task attribute, 2-69
FAMILY usercode attribute, 2-70
FAULT option, of OPTION task attribute,

2-145
FETCH task attribute, 2-72
FILE < internal name> OPEN ERROR:

TOO MANY NAMES message, 2-29
<: file attribute assignment list>, 2-78

in < file equation list> , 2-78
< file attribute value>, 2-78

in < file attribute assignment list> , 2-78
< file attribute> , 2-78

in < file attribute assignment list> , 2-78
< file equation list>, 2-78
< file equation>

in MYPPB assignments, 2-138
file equations, 2-78
FILE I/O ERROR: ATTEMPT TO EXCEED

TEMPORARY FILE ~ 2-214
< file internal name> , 2-78

in < file equation list>, 2-78
FILE, synonym for FILE CARDS task

attribute, 2-78
FILEACCESSRULE ATTRIBUTE

INCORRECT SYNTAX error
message, 2-75

FILEACCESSRULE task attribute, 2-74
FILEACCOUNTING task attribute, 2-76
FILECARDS ATTRIBUTE INCORRECT

SYNTAX error message, 2-81
FILECARDS ATTRIBUTE IS READONLY

ON ACTIVE TASK error message,
2-81

FILECARDS task attribute, 2-78
FILES option, of OPTION task attribute,

2-145

Index-3

Index

H

halt/loads
recovery, 2-165

HANDLEATTRffiUTES procedure of
WFLSUPPORT library, I-lOB

mSTORY task attribute, 2-82
interrogating at the bit level, 1-9

mSTORYCAUSE task attribute, 2-83
mSTORYREASON task attribute, 2-86
mSTORYTYPE task attribute, 2-103
HOSTNAME ATTRmUTE INCORRECT

SYNTAX error message, 2-104
HOSTNAME ATTRmUTE IS READONLY

ON ACTIVE TASK error message,
2-104

< hostname list> , 2-110
HOSTNAME task attribute, 2-104
<hour>, 2-181

in < starttime specification> , 2-181
< hours> , 2-181

in < starttime specification> , 2-181
HSP ARAMSIZE task attribute, 2-106
< hyphen>, 2-8

in < simple name> , 2-9
in < suppresswarning list> , 2-191

I/O time
interrogating programmatically, 2-19

< identifier> , 2-8
in < title> , 2-9

ILLEGAL ATTRIBUTE VALUE - TOO
LARGE error message, 2-178

ILLEGAL HOST-TO-HOST TRANSFER OF
TASK error message, 2-105

ILLEGAL VISIT error message
and PARTNER task attribute, 2-155

InfoGuard
UNITNO file attribute restrictions, 2-151

inheritance, 1-23
INHERITMCSSTATUS ATTRIBUTE -

RESTRICTED ACCESS message,
2-108

INHERITMCSSTATUS task attribute,
2-107

INITIALIZE statement, iD. WFL, 1-4
INITIATE ACTIVE TASK error message,

2-186C

Index-4

when reusing task variables, 1-4
INITIATOR, synonym for STATION task

attribute, 2-183
INITPBITCOUNT task attribute, 2-108C
INITPBITTIME task attribute, 2-109
integer task attributes, syntax for using, 1-7
< internal name> , 2-120
INVALID CHARGE CODE error message,

2-34
INVALID DESTINATION error message

and DESTNAME task attribute, 2-51
and DESTSTATION task attribute, 2-54

INVALID TASK ATTRIBUTE:
ACCESS CODE error message, 2-18

INVALID TASK ATTRIBUTE:
JOBSUMMARYTITLE log message,
2-118C

INVALID TASK ATTRIBUTE: USERCODE
error message, 2-219

INVALID TASK ATTRIBUTE: USERCODE
IS A DOT error message, 2-219

INVALID USERCODE WHEN INITIATING
A TASK error message, 2-219

IOTIME, synonym for MAXIOTTh1E task
attribute, 2-128

ITINERARY task attribute, 2-110

J

job queues.
effects on task attribute values, 1-23

JOBNUMBER ATTRIBUTE INCORRECT
SYNTAX error message, 2-113

JOBNUMBERATTRIBUTEISREADONLY
ON ACTIVE TASK error message,
2-113

JOBNUMBERATTRIBUTEMAYONLYBE
SET BY AN MCS ... message, 2-113

JOBNUMBER IS NOT A
SESSIONNUMBER error message,
2-113

JOBNUMBER task attribute, 2-112
JOBSUMMARY ATTRIBUTE INCORRECT

SYNTAX error message, 2-116
JOBSUMMARY task attribute, 2-114
JOBSUMMARYTITLE task attribute, 2-117
JOBSUMMARYTITLE TASK ATTRIBUTE

INCORRECT SYNTAX message,
2-118C

86000502-010

L

LANGUAGE
command, in MARC or CANDE, 2-119
task attribute, 2-118B
usercode attribute, 2-119

LANGUAGE ATrRIBUTE INCORRECT
SYNTAX error message, 2-119

< language identifier> , 2-118B
LffiRARIES option, of OPTION task

attribute, 2-145
< library attribute assignment>, 2-120
LIBRARY ATTRIBUTE IS READONLY ON

ACTIVE TASK error message, 2-122
< library attribute>, 2-120
< library equation>, 2-120

in MYPPB assignments, 2-138
LffiRARY task attribute, 2-120
LmRARYSTATE task attribute, 2-123

interrogating at the bit level, 1-9
LmRARYUSERS task attribute, 2-124
LOCKED task attribute, 2-125
LONG option, of OPTION task attribute,

2-145
LPBDONL Y operating system option, 2-144

M

MAKEUSER utility, 1-22
MAXCARDS task attribute, 2-126
MAXIOTIME task attribute, 2-128
MAXLINES task. attribute, 2-130
MAXPROCTIME task attribute, 2-132
MAXW AIT task attribute, 2-134
MCSNAME task attribute, 2-136
message control systems

BACKUPF AMILY, ability to assign, 2-26
FILEACCESSRULE, ability to assign,

2-74
inheriting status from, 2-107
JOBNUMBER, ability to assign, 2-112
SOURCESTATION, ability to assign,

2-173
task attribute errors, 1-26
USERCODE, ability to assign null value to,

2-218
<minute>, 2-181

in < starttime specification>, 2-181
< minutes>, 2-181

in < starttime specification>, 2-181·

86000502-010

Index

MIXNUMBER task attribute, 2-137
mnemonic task attributes, syntax for using,

1-8
MODIFY statement, in WFL, 1-6
< month>, 2-181

in < starttime specification>, 2-181
MYPPB ATTRffiUTE IS READONLY ON

ACTIVE TASK error message, 2-139
MYPPB IS EMPTY, NOTHING TO APPLY

warning message, 2-21
MYPPB task attribute, 2-138

N

NAME ATTRffiUTE INCORRECT SYNTAX
error message, 2-141

NAME ATTRffiUTE IS READONLY ON
ACTIVE TASK error message, 2-141

NAME task attribute, 2-140
<name>, 2-8

in DESTNAME task attribute, 2-50
in SOURCENAME, 2-170

NO FILE message
and AUTORESTORE task attribute, 2-23

NOFETCH system option, 2-72
NOJOBSUMMARYIO task attribute, 2-142
NON ANCESTRAL TASK REFERENCE

error message, 2-66, 2-68
NON ANCESTRAL TASKFILE error

message, 2-205
NON-LOCAL ACCEPTEVENT error

message, 2-14
NON-OWNER ACCESS OF A PRIVATE

TASK error message, 2-148
< nonquote EBCDIC character> , 2-8

in < identifier> , 2-8
< nonquote identifier> , 2-8

in < accesscode password> , 2-16
in < accesscode >, 2-16
in < alternate family>, 2-69
in < family name> , 2-8
in < identifier> , 2-8
in < primary family>, 2-69
in < target family>, 2-69
in < usercode > , 2-9

NOSUMMARYoption, of OPTION task
attribute, 2-145

null string, 2-9

Index-5

Index

o

object code files
task attribute assignments

using COMPILE and MODIFY, 1-5
using HANDLEATTRIBUTES, 1-21

OP (Options) system command
LPBDONL Y operating system option,

2-144
NOFETCH operating system option, 2-72
PDTODISK operating system option,

2-146
RESOURCECHECK operating system

option, 2-162
operating system options

LPBDONLY, 2-144
NOFETCH, 2-72
PDTODISK, 2-146
RESOURCECHECK, 2-162

OPTION task attribute, 2-144
options, (See operating system options,

OPTION task attribute)
OPTIONS, synonym for OPTION task

attribute, 2-144
ORGHOSTNAME task attribute, 2-12
ORGUNIT task attribute, 2-149

interrogating at the bit level, 1-9
OTHERPBITCOUNT task attribute, 2-152
OTHERPBITTIME task attribute, 2-153
overwrite rules, 1-24

p

partner processes
PARTNER task attribute description,

2-154
PARTNER task attribute, 2-154
P ARTNEREXISTS task attribute, 2-156
< password>, 2-8
PDTODISK operating system option, 2-146
PL/I

task attribute access in, 1-2
PRESENTARRAYS option, of OPTION task

attribute, 2-145
< primary family>, 2-69

in < family specification> , 2-69
< print attribute phrase>

in <print specification>, 2-157
PRINT LIMIT EXCEEDED error message

in task attribute discussion, 2-131

Index-6

< print modifier phrase>
in < print specification> , 2-157

< print specification> , 2-157
print system

PRINTDEFAULTS task attribute, 2-157
PRThITDEFAULTSATTRmUTE

INCORRECT SYNTAX error
message, 2-158

PRINTDEFAULTS task attribute, 2-157
PRINTLIMIT, synonym for MAXLINES task

attribute, 2-130
PRIORITY task attribute, 2-159

and PRIORITY usercode attribute, 2-160
private processes

and OPTION task attribute, 2-146
PRIV ATELmRARIES option, of OPTION

task attribute, 2-145
PRIVILEGED REQUIRED TO SET

FILEACCESSRULE = ACTOR
message, 2-75

processes
accessing, and task attribute errors, 1-26
private processes

and OPTION task attribute, 2-146
receiving, and task attribute errors, 1-26

PROCESSIOTThm, synonym for
ACCUMIOTIME task attribute, 2-19

processor time
interrogating programmatically, 2-20

PROCESSTTh1E, synonym for
ACCUMPROCTIME task attribute,
2-20

PUNCH LIMIT EXCEEDED error message,
2-127

PUNCHLIMIT, synonym for MAXCARDS
task attribute, 2-126

Q

QUEUE, synonym for CLASS task attribute,
2-37

R

railroad diagrams, explanation of, A-I
read-only task attributes, 2-10
real task attributes, syntax for using, 1-7
receiving process

and task attribute errors, 1-26

86000502-010

REMOTE BACKUP DISK ERROR message,
2-184

remote files
effects of TANKING task attribute on,

2-197
REQUIRES PK message

and FAMILY task attribute, 2-71
RESOURCE ATTRIBUTE IS WRITE ONLY

error message, 2-163
< resource list> , 2-161
RESOURCE task attribute, 2-161

as cause of process waiting state, 2-162
RESOURCECHECK operating system

option, 2-162
RESTART task attribute, 2-164
RESTARTED task attribute, 2-165
RPG,2-194

s

SA VEMEMORYLIMIT task attribute, 2-166
SB (Substitute Backup) system command

and BACKUPF AMILY task attribute,
2-25

SECURITY VIOLATION error message
and ACCESSCODE assignment, 2-18
and JOBSUMMARYTITLE task attribute,

2-118C
and USERCODE task attribute, 2-219

session number
inheritance by JOBNUMBER task

attribute, 2-112
SETTING FILEACCESSRULE TO ACTOR

IS RESTRICTED ... message, 2-75
sms option, of OPTION task attribute,

2-146
< simple name>, 2-9

in < backup prefix> , 2-28
in < charge code>, 2-32
in < database equation>, 2-44
in < file internal name>, 2-78
in <hostname list>, 2-110
in < title> , 2-8
in BACKUPF AMILY task attribute, 2-25

SORTLIMITS option, of OPTION task
attribute, 2-146

SOURCEKIND task attribute, 2-168
SOURCENAME task attribute, 2-170
SOURCESTATION ATTRIBUTE IS READ

ONLY ON ACTIVE TASK message,
2-174

86000502-010

Index

SOURCESTATION ATTRIBUTE MAY
ONLY BE SET BY AN MCS
message, 2-174

SOURCESTATION task attribute, 2-172
interrogating at the bit level, 1-9

STACK OVERFLOW error message
and STACKLIMIT task attribute, 2-178

STACK, synonym for STACKSIZE task
attribute, 2-179

STACKmSTORY task attribute, 2-175
STACKLIMIT task attribute, 2-178
STACKNO, synonym for MIXNU:MBER task

attribute, 2-136, 2-137
STACKSIZE ATTRmUTE IS READONLY

ON ACTIVE TASK error message,
2-180

STACKSIZE task attribute, 2-179
standard form, and BACKUPF AMILY task

attribute, 2-26
< starttime specification> , 2-181
STARTTIME task attribute, 2-181
STATION task attribute, 2-183
STATUS task attribute, 2-185
STOPPOINT task attribute, 2-187

interrogating at the bit level, 1-9
string task attributes

null string, 2-9
syntax for using, 1-8

SUBSPACES task attribute, 2-189
SUBSYSTEM task attribute, 2-190
SUPPRESSWARNING (Suppress Warning)

system command, 2-192
SUPPRESSWARNING ATTRIBUTE

INCORRECT SYNTAX. error
message,2-193

< suppresswarning list>, 2-191
SUPPRESSWARNING option of CO

(Controller Options) command, 2-192
SUPPRESSWARNING task attribute, 2-191
SW1 through SW8 task attributes, 2-194
SYMBOL/ATTABLEGEN, 2-1
SYMBOL/ATTRIBUTE/INTERPRETER/

INTERFACE
and ATTRIBUTEMESSAGE calls, 1-18
arid HANDLEATTRIBUTES calls, 1-11

SYSOPS (System Options) system command,
2-41,2-119 .

Index-7

Index

T

TADS ATTRIBUTE IS READONLY ON
ACTIVE TASK error message,
2-196C

TADS task attribute, 2-196
TANKING ATTRIBUTE INCORRECT

SYNTAX error message, 2-198
tanking mode, for remote files, 2-197
TANKING task attribute, 2-197
< tape count>, 2-161

in < resource list> , 2-161
TAPE LIMIT EXCEEDED error message,

2-162
tapes

and RESOURCE task attribute, 2-162
< target family> , 2-69

in < family specification>, 2-69
TARGET task attribute, 2-199
TARGErrTIME, synonym for TARGET task

attribute, 2-199
TASK ATTRIBUTE ACCESS FAULT error

message,2-118C
and MAXIOTIME task attribute, 2-129
and MAXPROCTIME task attribute,

2-133
and STACKHISTORY task attribute,

2-177
and TARGET task attribute, 2-199

< task attribute assignment>
in MYPPB assignments, 2-138

task attributes
accessing from programs, 1-2·
accessing through WFLSUPPORT library,

1-10B
assigning to a session, 1-2
assigning to job queues, 1-23
assigning to usercodes, 1-22
automatic updates ot; 1-24
bit-level access to, 1-9
Boolean, syntax for using, 1-6
compiled-in, 1-5
default values for, 1-23
descriptions, 2-1

format ot; 2-7
errors in accessing, 1-25
event, syntax for using, 1-7
functional groupings, 2-1
inheritance, 1-23
integer, syntax for using, 1-7
mnemonic, syntax for using, 1-8
name, 2-11

Index-8

nonpreferred, 2-11
object code files, assigning to, 1-5
operator commands used to access, 1-2
read-only, 2-10
real, syntax for using, 1-7
sources for accessing, 1-1
string, syntax for using, 1-8
synonyms, 2-11
system administrator access to, 1-22
task equations, assigning by way of

in CANDE or MARC, 1-1
in WFL, 1-4

task-valued, syntax for using, 1-9
unsupported, 2-1
usercode-related, 1-22
using task equations to assign values to,

1-1
write-only, 2-10

< task equation list>, 2-138
task equations

in CANDE or MARC, 1-1
in WFL, 1-4

task file
task attribute access to, 2-204

task variables, 1-2
reusing, 1-3

< task warnings list> , 2-211
task-valued task attributes, syntax for using,

1-9
TASKATTERR, synonym for ERROR task

attribute, 2-61
TASKERROR ATTRIBUTE IS READONLY

error message, 2-203
TASKERROR task attribute, 2-200
TASKFILE ATTRIBUTE IS READONLY

error message, 2-205
TASKFILE task attribute, 2-204
TASKLIMIT EXCEEDED message

and TASKLIMIT task attribute, 2-207
TASKLIMIT task attribute, 2-206
TASKSTRING ATTRIBUTE INCORRECT

SYNTAX error message, 2-209
< taskstring specification>, 2-208
TASKSTRING task attribute, 2-208
TASKV ALUE task attribute, 2-210
TASKWARNINGS task attribute, 2-211
TEMPFILELIMIT task attribute, 2-213
TEMPFILEMBYTES IS READONLY error

message, 2-215
TEMPFILEMBYTES task attribute, 2-215
terminal usercodes

CHARGE task attribute, 2-33

86000502-010

CLASS task attribute, 2-38
PRIORITY task attribute, 2-160

< title> , 2-9
in < database equation> , 2-44
in JOBSUMMARYTITLE task attribute,

2-117
in NAME task attribute, 2-140

TODISK program dump option, 2-146
TOO MANY LANGUAGES IN USE BY

SYSTEM error message, 2-119
TOPRINTER program dump option, 2-146
TYPE task attribute, 2-216

u
UNABLE TO OBTAIN STATION NAME

error message, 2-52
< underscore>, 2-9

in < simple name> , 2-9
UNITNO file attribute

example of use, 2-151
UNKNOWN FILE/STATION error message,

2-184
UP LEVEL TASK ASSIGNMENT error

message
and EXCEPTIONTASK task attribute,

2-68
< uppercase letter>, 2-9

in < convention identifier> , 2-40
in <language identifier>, 2-118B
in < nonquote identifier>, 2-8
in < simple name> , 2-9

USER SAVE :MEMORY LIMIT EXCEEDED
error message, 2-167

USERCODE ATTRIBUTE INCORRECT
SYNTAX error message, 2-219

usercode attributes, 1-22
USERCODE task attribute, 2-217
< usercode> , 2-9

in < backup prefix> , 2-28
in < title> , 2-9

usercodes
related task attributes, 1-22

USERDATA function
in DCALGOL, 1-22

USERDATAFILE, 1-22
U1 through U8 external indicators, in RPG,

2-194

86000502-010

Index

v
V ALIDITYBITS task attribute, 2-220
VALUE, synonym for T ASKV AL UE task

attribute, 2-210
VISIBILITY task attribute, 2-221
VISIT NONACTIVE TASK error message,

2-155

w
WAIT TIME LIMIT EXCEEDED error

message, 2-223
WAITING FOR PRINTSUPPORT TO

INITIALIZE message, 2-158
WAITING FOR RESOURCE message, 2-161
W AITLIMIT task attribute, 2-222
warning messages

interrogating, 2-211
< warning number> , 2-191

in < suppresswarning list>, 2-191
in < task warnings list> , 2-211

WFL
assigning task attributes to object code

files, 1-6
bit-level task attribute access, not available

in, 1-10
Boolean task attribute syntax, 1-6
compiler task equations in, 1-5
event task attribute syntax, 1-7
integer and real task syntax, 1-7
job attribute assignments in, 1-5
mnemonic task attribute syntax, 1-8
string task attribute syntax, 1-8
task equations in, 1-4
task-valued task attributes, not available

in, 1-9
WFLSUPPORT library, I-lOB
write-only task attributes, 2-10

y

<year>, 2-181
in < starttime specification> , 2-181

Index-9

Index-l0 86000502-010

1I11 ~ I111111 ~ III ~ 1111111111 ~I ~ 11111111111111111111111111111111
86000502-000

